Environmental impact of different scenarios for the pyrolysis of contaminated mixed plastic waste

Guillermo Garcia-Garcia^{1,2*}, María Ángeles Martín-Lara^{2*}, Mónica Calero², Gabriel Blázquez²

Supplementary Material

Table S1. Composition of the gas, % m/m

	Scenarios 1, 2 and 3
Hydrogen	7.3%
Oxygen	0%
Nitrogen	0%
Methane	49.6%
Carbon monoxide	2.3%
Ethane	11.4%
Ethylene	8.1%

¹ Department of Agrifood Chain Economics, Institute of Agricultural and Fisheries Research and Training (IFAPA), Centre 'Camino de Purchil', 18080 Granada, Spain.

² Department of Chemical Engineering, Faculty of Sciences, University of Granada, 18071 Granada, Spain.

^{*}Corresponding authors: guillermo.garcia@juntadeandalucia.es and marianml@ugr.es

Carbon dioxide	6.0%
Acetylene	13.1%
Propane	0%
Methylacetylene	2.3%

Table S2. Composition of the oil

		Scenarios 1, 2 and 3
	С	84.1
Elemental analysis 9/	Н	13.4
Elemental analysis, %	N	0,0
	0	2.5
Light Naphtha		2.2
Medium naphtha		3.8
Heavy naphtha		33.9
Kerosene		16.6
Distillate Fuel Oil		13.9
Light Vacuum Gas Oil		19.4
Heavy Vacuum Oil		10.2

Table S3. Characteristics of the char

Scer	nario 1	Scenario 2	Scenario 3

% N	0.86	1.23	0.61
% C	35.62	51.17	48.96
% H	2.23	0.78	0.50
% O	15.08	4.75	13.71
% Moisture	3.16	1.80	7.20
% Volatile	27.89	8.22	9.28
% Ash	46.21	42.07	36.22
% Fixed Carbon	20.81	47.91	47.30
S_{BET} (m ² g ⁻¹)	14.7	100.0	939.40
S_{MP} (m ² g ⁻¹)	0.8	22.6	821.80
V_T (cm ³ g ⁻¹)	0.025	0.209	0.65
V _{MP} (cm ³ g ⁻¹)	0.0	0.011	0.40
HHV, MJ kg ⁻¹	15.11	18.43	17.29

Table S4. Elemental analysis and Brunauer-Emmett-Teller (BET) area of the commercial activated carbons

	CARBOSORB NC 1240 ¹	Granular CAC ²	
% C	92.6	83.17	
% Н	0.35	1.32	
% N	0.05	n.d.	
% S	1.88	0.07	
% Others	7	15.51	
S _{BET} , m ² g ⁻¹	1127	1241	

Table S5. Life-cycle inventory for 20 g of mixed plastic waste

Flow name	Scenario 1	Scenario 2	Scenario 3	Unit
Plastic waste	20	20	20	g
Gas	7.34	7.34	7.34	g
Oil	11.34	11.34	11.34	g
Char 1	1.32	0	0	g
Char 2	0	1.32	1.32	g
Air 1	127.5	127.5	127.5	g
Combustion gases 1	37.09	37.09	37.09	g
Carbon dioxide 1	18.81	18.81	18.81	g
Water vapour 1	18.28	18.28	18.28	g
Diesel	11.16	11.16	11.16	g
Air 2	6.89	0	0	g
Combustion gases 2	2.43	0	0	g
Carbon dioxide 2	2.37	0	0	g
Water vapour 2	0.06	0	0	g
Water	0	0	26.4	g
Activating carbon dioxide	0	7.4	0	L
Spent carbon dioxide	0	7.4	0	L
Potassium hydroxide	0	0	0.46	g
Wastewater	0	0	26.9	g
Activated carbon	0	0.46	0.46	g
Electricity 1	0.006	0.006	0.006	kWh
Electricity 2	0	0.007	0.007	kWh

Heat 1	0.13	0.13	0.13 MJ
Heat 2	0.20	0.20	0.20 MJ
Heat 3	0.21	0.21	0.21 MJ
Heat 4	0.00	0.005	0.005 MJ

Table S6. Products and processes selected from ecoinvent. Note: unit products (U) were used instead of system products (S) to undertake the uncertainty analysis

Product or process	Compartment	Data entry in ecoinvent
	Known outputs to	Diesel {Europe without Switzerland} market for
Diesel	technosphere.	Cut-off, S
	Avoided products	,,,
	Known outputs to	Activated carbon, granular {GLO} market for
Activated carbon	technosphere.	activated carbon, granular Cut-off, S
	Avoided products	activated carbon, granular Cut-on, 3
Air	Known inputs from	Air
All	nature (resources)	All
Water	Known inputs from	Water unspecified natural origin ES
vvater	nature (resources)	Water, unspecified natural origin, ES
Potassium	Known inputs from	
	technosphere	Potassium hydroxide {GLO} market for Cut-off, S
hydroxide	(materials/fuels)	
Activating carbon	Known inputs from	Carbon dioxide, liquid {RER} market for Cut-off,
dioxide	technosphere	S

	(materials/fuels)	
	Known inputs from	
Electricity	technosphere	Electricity, low voltage {ES} market for Cut-off, S
	(electricity/heat)	
	Known inputs from	Heat, central or small-scale, natural gas {Europe
Heat	technosphere	without Switzerland} market for heat, central or
	(electricity/heat)	small-scale, natural gas Cut-off, S
Carbon dioxide,		
Spent carbon	Emissions to air	Carbon dioxide
dioxide		
Water vapour	Emissions to air	Water
Wastewater	Emissions to water	Water, ES
	Outputs to	Weste nelson and the County of wester
Landfill	technosphere:	Waste polypropylene {RoW} treatment of waste
	Waste treatment	polypropylene, sanitary landfill Cut-off, S
Electricity (for sensitivity analysis)	Known inputs from	Electricity, low voltage {ES} electricity production,
	technosphere	photovoltaic, 570kWp open ground installation,
	(electricity/heat)	multi-Si Cut-off, S

References

- S. Marzeddu, M. A. Décima, L. Camilli, M. P. Bracciale, V. Genova, L. Paglia, F. Marra, M. Damizia, M. Stoller, A. Chiavola and M. R. Boni, *Materials 2022, Vol. 15, Page 7162*, 2022, **15**, 7162.
- 2 R. Shahrokhi-Shahraki, C. Benally, M. G. El-Din and J. Park, *Chemosphere*, 2021, **264**, 128455.

