Supporting information

Reusable cobalt catalysts for general and selective αalkylation of nitriles with alcohols

Zhuang Ma,^a Zechen Wu,^a Carsten Kreyenschulte,^a Stephan Bartling,^a Henrik Lund,^a Matthias Beller^{*a} and Rajenahally V. Jagadeesh^{*a,b}

[a] Leibniz-Institut für Katalyse e.V., Albert-Einstein-Str. 29a, Rostock, D-18059, Germany
 [b] Nanotechnology Centre, Centre of Energy and Environmental Technologies, VŠB Technical University of Ostrava, Ostrava-Poruba, Czech Republic

*Corresponding authors

E-mails: <u>matthias.beller@catalysis.de</u>; jagadeesh.rajenahally@catalysis.de.

Table of contents

- S1. Materials and methods
- S2. Procedure for the preparation of catalysts
- S3. Characterization of catalysts
- S4. General procedure for the α -alkylation of nitriles with alcohols
- S5. Catalyst recycling
- S6. NMR data
- S7. NMR spectra

S1. Materials and methods

Alcohols and nitriles were obtained commercially from various chemical companies. Cobalt(II) chloride hexahydrate (cat no.255599-100G), zinc(II) chloride (cat no.208086-100G) and silica suspension (Silica LUDOX® AS-40 colloidal silica, cat no. 420840-1L) were purchased from Sigma Aldrich. D-Glucosamine hydrochloride (cat no. A15532-250G) was purchased from Alfa Aesar. Unless otherwise stated all reagents were used directly without purification.

The pyrolysis experiments were carried out in Dekema Austromat 624 oven. All catalytic experiments were carried out in ACS pressure tubes.

GC and GC-MS analysis were recorded on Agilent 6890N instrument. GC conversion and yields were determined by GC-FID, HP6890 chromatograph with FID detector, column HP 530 m x 250 mm x $0.25 \mu m$.

NMR spectra are recorded using Bruker 300 Fourier, Bruker AV 300 and Bruker AV 400 spectrometers. Chemical shifts are reported in ppm relative to the deuterated solvent. Coupling constants are expressed in Hertz (Hz). The following abbreviations are used: s = singlet, bs = broad singlet d = doublet, t = triplet and m = multiple. The residual solvent signals were used as references for ¹H and ¹³C NMR spectra (CDCl₃: δ H = 7.26 ppm, δ C = 77.12 ppm; DMSO-d₆: δ H = 2.50 ppm, δ C = 39.52 ppm).

XRD powder pattern were recorded on a Panalytical X'Pert diffractometer equipped with a Xcelerator detector using automatic divergence slits and Cu k α 1/ α 2 radiation (40 kV, 40 mA; λ = 0.15406 nm, 0.154443 nm). Cu beta-radiation was excluded using a nickel filter foil. The measurements were performed in 0.0167° steps and 100 s of data collecting time per step. The samples were mounted on silicon zero background holders. The obtained intensities were converted from automatic to fixed divergence slits (0.25°) for further analysis. Peak positions and profile were fitted with Pseudo-Voigt function using the High Score Plus software package (Panalytical). Phase identification was done by using the PDF-2 database of the International Center of Diffraction Data (ICDD).

Scanning transmission electron microscopy (STEM) measurements were performed with a probe aberration-corrected JEM-ARM200F (JEOL, Corrector: CEOS) at 200 kV. The microscope was equipped with an Enfinium ER (GATAN) electron energy-loss spectrometer and a JEOL SDD detector for chemical analysis. High-Angle Annular Dark Field (HAADF) and Annular Bright Field (ABF) detectors were used for general imaging. The solid samples were deposited without any pretreatment on a holey carbon supported Cu-grid (mesh 300) and transferred to the microscope.

The X-ray Photoelectron Spectroscopy (XPS) measurements were performed on an ESCALAB 220iXL (Thermo Fisher Scientific) with monochromated Al K α radiation (E = 1486.6 eV). Samples are prepared on a stainless-steel holder with conductive double-sided adhesive carbon tape. The electron binding energies were obtained with charge compensation using a flood electron source and referenced to the C 1s core level of adventitious carbon at 284.8 eV (C-C and C-H bonds) for the insolating samples containing Si. For the conductive samples after the removal of SiO₂ no charge referencing was applied, resulting in a C 1s main peak at around 284.7 eV. For quantitative analysis the peaks were deconvoluted with Gaussian-Lorentzian curves using the software Unifit 2021. The peak areas were normalized by the transmission function of the spectrometer and the element specific sensitivity factor of Scofield.

S2. Procedure for the preparation of catalysts

In a 100 mL dried round bottomed flask, 291.1 mg CoCl₂·6H₂O (1 mmol), 272.6 mg ZnCl₂(2 mmol), and 2156.4 mg D-glucosamine hydrochloride (DGA; 10 mmol,) were dissolved in 20 mL deionized water by stirring for 30 minutes at room temperature. To this solution, 5 g colloidal silica aqueous solution (Ludox HS-40, 40 wt%,) was added and continued stirring for another 12 hours at room temperature. Then, the reaction mixture was subject to freeze drying to remove the water. The obtained solid material was grounded to a fine powder and transferred to crucible. The crucible was closed with a lid and placed in a pyrosis oven and then heated to the defined temperature (800-1000 °C) for 3 h at the heating rate of 5 °C/min under Argon gas. After the completion of pyrolysis, the oven was cooled down to room temperature and the material was removed from the oven (Co@PNC-900-SiO₂). Next, the pyrolyzed materials were etched in 5 M NH₄HF₂ aqueous solution at room temperature for 24 h to remove the SiO₂ template and larger particles. Finally, the resulting catalytic material was filtered and washed subsequently with deionized water and ethanol several times and finally dried under vacuum (Co@PNC-900). Elemental Analysis of optimal catalyst, Co@PNC-900: Co = 1.23 wt% (1.26 wt% was measured by ICP-OES), C = 70 wt%, N = 6.9 wt%, H = 0.68 wt%, Si = 0.34wt%. Other materials such as Co@NC-900 in the absence of ZnCl₂, porous N-C material without the addition of cobalt precursors and Co-particles-900 without glucose amine were also prepared using similar procedure.

<u>S3. Characterization of catalysts</u>

XRD patterns

Figure S1. XRD pattern of Co@PNC-900-SiO₂ catalyst.

Figure S2. XRD pattern of Co@PNC-900 catalyst.

Figure S3. XRD pattern of Co@PNC-900-R (recycled) catalyst.

Figure S4. STEM-HAADF images (A-C) of Co@PNC-900 and corresponding EDX spectra (D) of marked regions showing examples of the few Co oxide and SiO₂ particles found in the specimen.

XPS data and spectra

Table S1. Surface composition of different cobalt samples obtained by XPS. All values are given in at.%.

Catalyst	С	0	Ν	Со	Si	F	Na
CO@PNC-900-SiO ₂	43.3	30.7	6.2	0.4	17.9	0.7	0.7
CO@PNC-900	80.9	6.6	11.5	0.4	0.6	-	-
CO@PNC-900-R	82.43	6.03	10.72	0.3	0.5	-	-

Figure S5. X-ray photoelectron spectra for Co@PNC-900-SiO₂. (a) C 1s, (b) O 1s, (c) N 1s, (d) Co 2p region.

Figure S6. X-ray photoelectron spectra for Co@PNC-900-R. (a) C 1s, (b) O 1s, (c) N 1s, (d) Co 2p region.

<u>S4. General procedure for the α-alkylation of nitriles with alcohols</u>

The magnetic stirring bar, 0.5 mmol nitrile and 1 mmol alcohol, 50 mg catalyst (Co@PNC-900, 2.04 mol% Co) and 0.5 mmol K_3PO_4 (1.0 equiv) were transferred to 20 mL pressure tube. Then, 2 mL dry toluene was added, and the pressure tube was flushed with argon and fitted with screw cap. The pressure tube containing reaction mixture was placed into an aluminum block and reaction was allowed to progress under stirred condition at 140 °C for 24 h. After the completion of the reaction, the pressure tube was cooled to room temperature and the cap was slowly removed. Then, the reaction products were removed from the pressure tube, and the solid catalyst was filtered off and washed thoroughly with ethyl acetate. The reaction products were analyzed by GC-MS. The corresponding

products were purified by column chromatography (silica; pentene-ethyl acetate mixture) and characterized by NMR and GCMS spectral analysis. Following procedure is applied for determining the conversion and yields by GC: After completion of the reaction, n-hexadecane (50 μ L) as standard was added to the reaction pressure tube and the reaction products were diluted with ethyl acetate followed by filtration using plug of silica. Then the filtrate containing products were analyzed by GC.

Table S2. Co-catalyzed α -alkylation of phenyl acetonitrile with benzyl alcohol: Testing of different solvents.

CN + OH - Co@PNC-900 + CN + CN					
1	2	toluene	3	3a	
Entry	Solvent	Conv. of 1 (%)	Yield of 3 (%)	Yield of 3a (%)	
1	THF	70	62	7	
2	Toluene	99	95	3	
3	1,4-dioxane	67	55	11	
4	t-BuOH	85	78	5	
5	P-xylene	96	85	10	
6	MeCN	54	43	9	
7 ^b	Toluene	61	50	7	
8°	Toluene	74	60	10	

Reaction conditions: 0.5 mmol phenyl acetonitrile, 1 mmol benzyl alcohol, 50 mg Co@PNC-900 (2.04 mol% Co), 0.5 mmol K₃PO₄, 2 mL solvent, 140 °C, 24 h. ^b: same as "a" with 50 mg Co@PNC-700; ^c: same as "a" with 50 mg Co@PNC-800; conversion and yields are based on phenyl acetonitrile and determined by GC using n-hexadecane as standard.

Table S3. Co-catalyzed α -alkylation of phenyl acetonitrile with benzyl alcohol: Testing of different bases.

$\begin{array}{c} & & \\$				CN 3a
Entry	Base	Conv. 1 (%)	Yield 3 (%)	Yield 3a (%)
1	КОН	82	78	3
2	K ₃ PO ₄	99	95	3
3	K ₂ CO ₃	20	10	8
4	Cs ₂ CO ₃	76	68	5

Reaction conditions: 0.5 mmol phenyl acetonitrile, 1 mmol benzyl alcohol, 50 mg catalyst (2.04 mol% Co), 0.5 mmol base, 2 mL toluene, 140 °C, 24 h, conversion and yields are based on phenyl acetonitrile and determined by GC using n-hexadecane as standard.

Table S4. Co-catalyzed α -alkylation of phenyl acetonitrile with benzyl alcohol with different amounts of benzyl alcohol^a.

$\begin{array}{c} & & \\$				
Entry	Benzyl alcohol	Conv. 1 (%)	Yield 3 (%)	Yield 3a (%)
1	0.5 mmol (1 eq)	76	71	3
2	0.7 mmol (1.4 eq)	85	82	
3	1 mmol (2 eq)	99	95	3
4 ^b	1 mmol (2 eq)	90	80	8
5°	1 mmol (2 eq)	71	60	10

Reaction conditions^a: 0.5 mmol phenyl acetonitrile, 0.5-1 mmol benzyl alcohol, 50 mg catalyst (2.04 mol% Co), 0.5 K₃PO₄, 2 mL toluene, 140 °C, 24 h. ^b: 130 °C; ^c: 120 °C. conversion and yields are based on phenyl acetonitrile and determined by GC using n-hexadecane as standard.

Table S5. Comparison of TON value of our Co-catalyst with previously reported heterogeneous catalysts.

HT: Hydrotalcite; TON: mmol of desired product 3/mmol of catalyst; TOF: TON/time.

Figure S7. Co-catalyzed α -alkylation of phenyl acetonitrile with benzyl alcohol: Reaction progress with time. **Reaction conditions:** 0.5 mmol phenyl acetonitrile, 1 mmol benzyl alcohol, 50 mg catalyst (2.04 mol% Co), 0.5 mmol K₃PO₄, 2 mL toluene, 140 °C, 1-24 h, conversion and yields are based on phenyl acetonitrile and determined by GC using n-hexadecane as standard.

Scheme S1. Failed examples. **Reaction conditions:** 0.5 mmol nitrile, 1.0 mmol alcohol, 70 mg catalyst (2.86 mol% Co), 0.5 K₃PO₄, 2 mL toluene, 150 °C, 24 h. conversion and yields are based on phenyl acetonitrile and determined by GC using n-hexadecane as standard.

S5. Catalyst recycling

The magnetic stirring bar, 1.5 mmol phenyl acetonitrile and 3 mmol benzyl alcohol, 160 mg Co@PNC-900 and 1.5 mmol K_3PO_4 were transferred to 20 mL pressure tube and 4 mL dry toluene was added. The pressure tube was flushed with argon and closed with screw cap. Then, it was placed into an aluminum block and heated to 140 °C for desired time. After the completion of the reaction, the pressure tube was cooled down to room temperature. To the reaction products, 150 μ L n-hexadecane as standard was added. The catalyst was separated by centrifugation and the centrifugate containing reaction products was subjected to GC analysis. The separated catalyst was washed with water, methanol and ethyl acetate and then dried under vacuum. The dried catalyst was used for the next run without further purification or reactivation.

S6. NMR data

CN

2,3-diphenylpropanenitrile¹: ¹H NMR (300 MHz, CDCl3) δ 7.32 – 7.26 (m, 3H), 7.26 – 7.18 (m, 5H), 7.12 – 7.06 (m, 2H), 3.95 (dd, J = 8.2, 6.5 Hz, 1H), 3.20 – 3.03 (m, 2H).

2-phenyl-3-(m-tolyl)propanenitrile²: ¹**H NMR (300 MHz, CDCl₃)** δ 7.41 – 7.26 (m, 5H), 7.19 (td, *J* = 7.4, 0.7 Hz, 1H), 7.11 – 7.06 (m, 1H), 7.00 – 6.90 (m, 2H), 3.99 (dd, *J* = 8.4, 6.5 Hz, 1H), 3.20 – 3.05 (m, 2H), 2.32 (d, *J* = 0.7 Hz, 3H).

¹³C NMR (**75** MHz, CDCl₃) δ 138.33, 136.27, 135.40, 129.95, 129.02, 128.52, 128.19, 128.13, 127.49, 126.20, 112.27, 42.23, 39.90, 21.36.

CN

2-phenyl-3-(o-tolyl)propanenitrile²: ¹H NMR (300 MHz, CDCl₃) δ 7.38 – 7.26 (m, 5H), 7.20 – 7.11 (m, 4H), 3.96 (dd, *J* = 8.7, 6.6 Hz, 1H), 3.30 – 3.08 (m, 2H), 2.23 (s, 3H).

¹³C NMR (75 MHz, CDCl₃) δ 136.29, 135.48, 134.70, 130.61, 130.07, 129.08, 128.25, 127.56, 127.41, 126.30, 120.50, 39.52, 38.78, 19.25.

CN

3-(4-ethylphenyl)-2-phenylpropanenitrile⁶: ¹H NMR (300 MHz, CDCl₃) δ 7.31 – 7.14 (m, 5H), 7.07 – 6.95 (m, 4H), 3.94 – 3.81 (m, 1H), 3.10 – 2.95 (m, 2H), 2.53 (q, *J* = 7.6 Hz, 2H), 1.13 (t, *J* = 7.6 Hz, 3H).

¹³C NMR (**75** MHz, CDCl₃) δ 143.41, 135.46, 133.58, 129.19, 129.05, 128.20, 128.16, 127.53, 120.54, 41.92, 40.00, 28.53, 15.57.

CN

3-(4-isopropylphenyl)-2-phenylpropanenitrile⁶: ¹H NMR (300 MHz, CDCl₃) δ 7.32 – 7.13 (m, 5H), 7.11 – 6.97 (m, 4H), 3.94 – 3.84 (m, 1H), 3.13 – 2.97 (m, 2H), 2.87 – 2.77 (m, 1H), 1.16 (d, *J* = 6.9 Hz, 6H).

¹³C NMR (**75** MHz, CDCl₃) δ 148.05, 135.52, 133.74, 129.15, 129.05, 128.19, 127.51, 126.73, 120.55, 41.94, 40.02, 33.80, 24.01.

3-(4-(tert-butyl)phenyl)-2-phenylpropanenitrile: ¹H NMR (**300** MHz, CDCl₃) δ 7.32 – 7.15 (m, 7H), 7.06 – 6.99 (m, 2H), 3.94 – 3.82 (m, 1H), 3.12 – 2.96 (m, 2H), 1.23 (s, 9H). ¹³C NMR (**75** MHz, CDCl₃) δ 150.33, 135.56, 133.40, 129.06, 128.88, 128.20, 127.49, 125.60, 120.57, 41.84, 40.00, 34.53, 31.38.

3-([1,1'-biphenyl]-4-yl)-2-phenylpropanenitrile: ¹H NMR (**300** MHz, CDCl₃) δ 7.62 – 7.51 (m, 4H), 7.48 – 7.41 (m, 2H), 7.39 – 7.29 (m, 5H), 7.25 – 7.19 (m, 2H), 4.05 (dd, *J* = 8.2, 6.5 Hz, 1H), 3.30 – 3.15 (m, 2H).

¹³C NMR (75 MHz, CDCl₃) δ 140.63, 140.30, 135.30, 135.21, 129.68, 129.09, 128.81, 128.28, 127.54, 127.38, 127.34, 127.06, 120.40, 41.89, 39.82.

3-(Naphthalen-2-yl)-2-phenylpropanenitrile¹: ¹H NMR (300 MHz, CDCl₃) δ 7.89 – 7.71 (m, 3H), 7.61 (dd, *J* = 1.8, 1.0 Hz, 1H), 7.54 – 7.42 (m, 2H), 7.42 – 7.24 (m, 6H), 4.11 (dd, *J* = 8.1, 6.6 Hz,

1H), 3.47 – 3.23 (m, 2H).

¹³C NMR (**75** MHz, CDCl₃) δ 135.22, 133.74, 133.40, 132.61, 129.08, 128.36, 128.27, 128.15, 127.76, 127.68, 127.54, 127.12, 126.25, 125.96, 120.40, 42.39, 39.77.

3-(2-fluorophenyl)-2-phenylpropanenitrile: ¹**H NMR (300 MHz, CDCl₃)** δ 7.31 – 7.18 (m, 7H), 7.12 – 7.06 (m, 1H), 7.04 – 6.95 (m, 2H), 4.01 (dd, *J* = 8.5, 6.9 Hz, 1H), 3.20 – 3.07 (m, 2H). ¹³**C NMR (75 MHz, CDCl₃)** δ 162.84, 159.59, 135.19, 131.66, 131.60, 129.52, 129.41, 129.18, 129.12, 128.35, 127.97, 127.40, 124.38, 124.33, 123.65, 123.45, 120.21, 115.65, 115.37, 38.35, 38.32, 35.98, 35.96.

3-(2-chlorophenyl)-2-phenylpropanenitrile: ¹**H NMR (400 MHz, CDCl₃)** δ 7.48 – 7.39 (m, 6H), 7.32 – 7.26 (m, 3H), 4.24 (dd, *J* = 9.6, 6.1 Hz, 1H), 3.42 – 3.25 (m, 2H). ¹³**C NMR (101 MHz, CDCl₃)** δ 135.30, 134.21, 134.05, 131.86, 129.77, 129.17, 129.15, 128.35,

127.34, 127.21, 120.17, 40.48, 37.68.

3-(4-(methylthio)phenyl)-2-phenylpropanenitrile: ¹H NMR (**300** MHz, CDCl₃) δ 7.38 (dddd, *J* = 8.5, 4.7, 3.2, 1.6 Hz, 3H), 7.30 – 7.26 (m, 2H), 7.19 (td, *J* = 5.5, 2.2 Hz, 2H), 7.11 – 7.02 (m, 2H), 4.00 (dd, *J* = 8.0, 6.6 Hz, 1H), 3.25 – 3.07 (m, 2H), 2.49 (s, 3H).

¹³C NMR (75 MHz, CDCl₃) δ 137.63, 135.07, 132.97, 129.72, 129.06, 128.25, 127.51, 126.70, 120.31, 41.66, 39.78, 15.79.

3-(2-Methoxyphenyl)-2-phenylpropanenitrile¹: ¹H NMR (300 MHz, CDCl₃) δ 7.41 – 7.26 (m, 6H), 7.10 (ddd, *J* = 7.5, 1.4, 0.8 Hz, 1H), 6.93 – 6.87 (m, 2H), 4.19 (dd, *J* = 8.9, 6.5 Hz, 1H), 3.86 (s, 3H), 3.24 – 3.11 (m, 2H).

¹³C NMR (**75** MHz, CDCl₃) δ 157.46, 136.09, 131.21, 128.93, 128.88, 127.99, 127.41, 124.96, 120.87, 120.65, 110.35, 55.33, 37.79, 37.69.

3-(4-(benzyloxy)phenyl)-2-phenylpropanenitrile: ¹**H NMR (300 MHz, CDCl₃)** δ 7.49-7.34 (m, 8H), 7.31-7.28 (m, 1H), 7.11-7.03 (m, 3H), 6.98 – 6.90 (m, 2H), 6.79 – 6.72 (m, 1H), 5.07 (s, 2H), 3.99 (dd, *J* = 8.0, 6.6 Hz, 1H), 3.21-3.06 (m, 2H).

¹³C NMR (75 MHz, CDCl₃) δ 158.16, 153.56, 136.97, 135.26, 130.41, 130.07, 129.73, 129.07, 128.66, 128.23, 128.07, 127.58, 120.57, 115.19, 115.03, 70.09, 41.43, 40.07, 20.54.

3-(4-(dimethylamino)phenyl)-2-phenylpropanenitrile: ¹H NMR (**300** MHz, CDCl₃) δ 7.42 – 7.27 (m, 5H), 7.06 – 7.00 (m, 2H), 6.72 – 6.65 (m, 2H), 3.95 (dd, *J* = 8.2, 6.5 Hz, 1H), 3.19 – 3.03 (m, 2H), 2.95 (s, 6H). ¹H NMR (300 MHz, CDCl₃) δ 7.42 – 7.27 (m, 5H), 7.06 – 7.00 (m, 2H), 6.72 – 6.65 (m, 2H), 3.95 (dd, *J* = 8.2, 6.5 Hz, 1H), 3.19 – 3.03 (m, 2H), 2.95 (s, 6H).

¹³C NMR (75 MHz, CDCl₃) δ 149.88, 135.68, 129.95, 128.97, 128.05, 127.58, 124.09, 120.79, 112.66, 41.52, 40.63, 40.33.

3-(benzodioxol-5-yl)-2-phenylpropanenitrile¹: ¹H NMR (**300** MHz, CDCl₃) δ 7.28 – 7.25 (m, 2H), 7.21 – 7.16 (m, 2H), 6.66 – 6.60 (m, 1H), 6.55 – 6.48 (m, 2H), 5.84 (s, 2H), 3.91 – 3.84 (m, 1H), 3.02 – 2.93 (m, 2H).

¹³C NMR (**75** MHz, CDCl₃) δ 147.77, 146.90, 135.16, 129.97, 129.07, 128.26, 127.50, 122.53, 120.40, 109.51, 108.38, 101.09, 41.95, 40.04.

2-phenyl-3-(thiophen-2-yl)propanenitrile: ¹**H NMR (300 MHz, CDCl₃)** δ 7.39 – 7.33 (m, 3H), 7.32 – 7.28 (m, 2H), 7.18 (dd, *J* = 5.1, 1.2 Hz, 1H), 6.93 (dd, *J* = 5.1, 3.5 Hz, 1H), 6.88 – 6.82 (m, 1H), 4.09 – 4.01 (m, 1H), 3.49 – 3.31 (m, 2H).

¹³C NMR (75 MHz, CDCl₃) δ 137.92, 134.74, 129.12, 128.44, 127.48, 127.00, 124.94, 120.13, 40.11, 36.21.

2-(4-fluorophenyl)-3-(furan-2-yl)propanenitrile⁴: ¹H NMR (400 MHz, CDCl₃) δ 7.35 (dd, *J* = 1.9, 0.8 Hz, 1H), 7.28 – 7.21 (m, 2H), 7.10 – 7.01 (m, 2H), 6.29 (dd, *J* = 3.2, 1.9 Hz, 1H), 6.10 (dq, *J* = 3.2, 0.8 Hz, 1H), 4.14 (dd, *J* = 8.0, 6.8 Hz, 1H), 3.31 – 3.08 (m, 2H). ¹³C NMR (101 MHz, CDCl₃) δ 163.76, 161.30, 149.64, 142.27, 130.66, 130.62, 129.11, 129.02,

119.97, 116.20, 115.98, 110.56, 108.43, 36.33, 34.65.

¹⁹F NMR (282 MHz, CDCl₃) δ -113.31.

3-(5-methylfuran-2-yl)-2-phenylpropanenitrile: ¹**H NMR (300 MHz, CDCl₃)** δ 7.38 – 7.22 (m, 5H), 5.94 (dq, *J* = 3.2, 0.6 Hz, 1H), 5.82 (dq, *J* = 3.2, 1.0 Hz, 1H), 4.08 (dd, *J* = 8.7, 6.4 Hz, 1H), 3.20 – 2.99 (m, 2H), 2.23 – 2.20 (m, 3H).

¹³C NMR (**75** MHz, CDCl₃) δ 151.78, 148.14, 135.10, 129.08, 128.29, 127.32, 120.24, 108.92, 106.35, 37.31, 34.85, 13.54.

3-(6-methoxypyridin-2-yl)-2-phenylpropanenitrile: ¹H NMR (**300** MHz, CDCl₃) δ 7.38 (dd, *J* = 8.3, 7.2 Hz, 1H), 7.29 – 7.24 (m, 5H), 6.60 – 6.51 (m, 2H), 4.42 (dd, *J* = 8.8, 6.5 Hz, 1H), 3.87 (s, 3H), 3.26 – 3.06 (m, 2H).

¹³C NMR (**75** MHz, CDCl₃) δ 163.89, 153.64, 139.13, 135.69, 129.06, 128.11, 127.45, 120.89, 116.24, 109.28, 53.47, 43.42, 36.71.

3-(1H-indol-3-yl)-2-phenylpropanenitrile⁴: ¹H NMR (300 MHz, CDCl₃) δ 8.01 (s, 1H), 7.38 (ddt, *J* = 7.8, 1.4, 0.8 Hz, 1H), 7.32 – 7.20 (m, 6H), 7.16 – 7.10 (m, 1H), 7.07 – 7.01 (m, 1H), 6.95 – 6.91 (m, 1H), 4.03 (dd, *J* = 8.5, 6.2 Hz, 1H), 3.35 – 3.17 (m, 2H).

¹³C NMR (75 MHz, CDCl₃) δ 136.16, 135.91, 129.08, 128.18, 127.48, 126.89, 123.34, 122.30, 121.18, 119.73, 118.18, 111.48, 110.89, 39.21, 32.49.

3-(3,4-dimethoxyphenyl)-2-phenylpropanenitrile⁵**:** ¹**H NMR (300 MHz, CDCl₃)** δ 7.41 – 7.31 (m, 3H), 7.27 – 7.22 (m, 2H), 6.79 (d, *J* = 8.2 Hz, 1H), 6.73 – 6.67 (m, 1H), 6.52 (d, *J* = 2.0 Hz, 1H), 3.99 – 3.94 (m, 1H), 3.86 (s, 3H), 3.76 (s, 3H), 3.21 – 3.04 (m, 2H).

¹³C NMR (**75** MHz, CDCl₃) δ 148.74, 148.31, 135.21, 129.00, 128.64, 128.16, 127.61, 121.45, 120.50, 112.45, 111.16, 55.87, 55.78, 41.82, 39.95.

3-(2,3-dimethoxyphenyl)-2-phenylpropanenitrile: ¹**H NMR (300 MHz, CDCl₃)** δ 7.36 – 7.28 (m, 5H), 6.98 (dd, *J* = 8.3, 7.5 Hz, 1H), 6.88 – 6.85 (m, 1H), 6.74 (s, 1H), 4.17 – 4.10 (m, 1H), 3.88 (m, 3H), 3.86 (m, 3H), 3.18 – 3.13 (m, 2H).

¹³C NMR (**75** MHz, CDCl₃) δ 152.65, 147.29, 135.94, 130.34, 129.02, 128.09, 127.38, 123.97, 122.74, 120.77, 112.01, 77.47, 77.05, 76.63, 60.69, 55.75, 38.47, 37.49.

3-(4-hydroxy-3-methoxyphenyl)-2-phenylpropanenitrile: ¹**H NMR (300 MHz, CDCl₃)** δ 7.41 – 7.23 (m, 5H), 6.81 – 6.70 (m, 2H), 6.68 – 6.63 (m, 1H), 5.66 (s, 1H), 3.96 (dd, *J* = 8.3, 6.6 Hz, 1H), 3.86 (s, 3H), 3.16 – 2.99 (m, 2H).

¹³C NMR (75 MHz, CDCl₃) δ 145.93, 145.63, 135.36, 129.55, 129.04, 128.19, 127.49, 120.90, 120.52, 115.25, 110.70, 55.96, 41.71, 39.99.

2-phenyl-3-(2,3,4-trimethoxyphenyl)propanenitrile: ¹H NMR (300 MHz, CDCl₃) δ 7.41 – 7.22 (m, 5H), 6.82 (d, *J* = 8.4 Hz, 1H), 6.59 (d, *J* = 8.5 Hz, 1H), 4.08 (dd, *J* = 9.0, 6.4 Hz, 1H), 3.90 (s, 3H), 3.85 (d, *J* = 6.8 Hz, 6H), 3.15 – 2.99 (m, 2H).

¹³C NMR (75 MHz, CDCl₃) δ 153.43, 151.90, 142.03, 135.94, 129.00, 128.04, 127.37, 125.07, 122.34, 120.84, 106.97, 60.92, 60.76, 55.96, 38.80, 37.33.

CN CN

3-cyclobutyl-2-phenylpropanenitrile: ¹**H NMR (300 MHz, CDCl₃)** δ 7.40 – 7.28 (m, 5H), 3.67 (dd, *J* = 8.6, 6.5 Hz, 1H), 2.52 – 2.36 (m, 1H), 2.18 – 1.71 (m, 6H), 1.70 – 1.54 (m, 2H). ¹³**C NMR (75 MHz, CDCl₃)** δ 136.03, 129.04, 127.25, 125.64, 121.00, 42.84, 35.49, 33.59, 28.01, 18.44.

CN CN

3-Cyclohexyl-2-phenylpropanenitrile¹: ¹H NMR (300 MHz, CDCl₃) δ 7.57 – 7.22 (m, 5H), 3.89 – 3.82 (m, 1H), 1.97 – 1.78 (m, 2H), 1.78 – 1.07 (m, 11H).

¹³C NMR (75 MHz, CDCl₃) δ 136.52, 129.10, 127.96, 127.22, 121.15, 43.71, 35.31, 34.82, 33.29, 32.36, 26.34, 25.96, 25.87.

2-cyclohexyl-2-phenylacetonitrile: ¹H NMR (300 MHz, CDCl₃) δ 7.30 – 7.15 (m, 5H), 3.52 (d, J = 6.6 Hz, 1H), 1.79 – 1.53 (m, 6H), 1.06 (tq, J = 12.3, 3.4 Hz, 5H).

¹³C NMR (75 MHz, CDCl₃) δ 134.70, 128.80, 127.99, 127.91, 120.15, 44.36, 42.78, 31.24, 29.58, 25.95, 25.85, 25.80.

2,4-Diphenylbutanenitrile¹: ¹**H NMR (300 MHz, CDCl₃)** δ 7.25 – 7.06 (m, 10H), 6.60 – 6.11 (m, 1H), 3.45 (d, *J* = 6.3 Hz, 1H), 2.58 – 2.52 (m, 2H), 1.92 – 1.82 (m, 1H).

¹³C NMR (75 MHz, CDCl₃) δ 142.32, 131.10, 129.26, 128.71, 128.48, 128.34, 127.14, 126.16, 125.77, 39.38, 35.47, 32.99.

2,5-Diphenylpentanenitrile³: ¹H NMR (300 MHz, CDCl₃) δ 7.60 – 7.19 (m, 10H), 3.90 – 3.72 (m, 1H), 2.72 (q, *J* = 8.2 Hz, 2H), 1.96 (dp, *J* = 21.1, 8.6 Hz, 4H).

¹³C NMR (**75** MHz, CDCl₃) δ 141.25, 135.87, 129.17, 128.56, 128.46, 128.15, 127.33, 126.17, 120.87, 37.32, 35.29, 35.18, 28.64.

2-Phenylbutanenitrile¹: ¹**H NMR (400 MHz, CDCl₃)** δ 7.44 – 7.32 (m, 5H), 3.77 (t, *J* = 7.2 Hz, 1H), 2.03 – 1.94 (m, 2H), 1.10 (t, *J* = 7.4 Hz, 3H).

¹³C NMR (101 MHz, CDCl₃) δ 135.78, 129.04, 128.03, 127.32, 120.79, 38.92, 29.24, 11.50.

2-Phenylheptanenitrile³: ¹H NMR (300 MHz, CDCl₃) δ 7.29 – 7.15 (m, 5H), 3.65 (dd, J = 8.4, 6.4 Hz, 1H), 1.83 – 1.64 (m, 2H), 1.43 – 1.28 (m, 2H), 1.22 – 1.15 (m, 4H), 0.79 – 0.74 (m, 3H).
¹³C NMR (75 MHz, CDCl₃) δ 136.13, 129.05, 127.99, 127.25, 120.97, 37.42, 35.91, 31.12, 26.73, 22.37, 13.96.

2-Phenyloctanenitrile³: ¹H NMR (300 MHz, CDCl₃) δ 7.36 – 7.21 (m, 5H), 3.72 (dd, J = 8.4, 6.4 Hz, 1H), 1.91 – 1.75 (m, 2H), 1.50 – 1.36 (m, 2H), 1.28 – 1.20 (m, 6H), 0.85 – 0.80 (m, 3H).
¹³C NMR (75 MHz, CDCl₃) δ 136.13, 129.05, 127.98, 127.25, 120.97, 37.43, 35.95, 31.50, 28.64, 27.02, 22.54, 14.03.

5,7,7-trimethyl-2-phenyloctanenitrile: ¹**H NMR (300 MHz, CDCl₃)** δ 7.99 – 7.92 (m, 1H), 3.00 – 2.92 (m, 1H), 1.64 – 1.51 (m, 2H), 1.33 – 1.28 (m, 1H), 1.25 (d, *J* = 1.4 Hz, 1H), 0.98 (d, *J* = 6.4 Hz, 2H), 0.93 – 0.92 (m, 2H), 0.90 (s, 9H), 0.87 (d, *J* = 1.7 Hz, 3H).

¹³C NMR (75 MHz, CDCl₃) δ 200.78, 132.85, 129.05, 128.56, 128.05, 127.23, 77.47, 77.04, 76.62, 51.04, 36.52, 33.69, 31.09, 30.07, 30.00, 29.04, 22.53.

2-phenyldecanenitrile³: ¹**H NMR (300 MHz, CDCl₃)** δ 7.49 – 7.21 (m, 5H), 3.80 – 3.73 (m, 1H), 2.14 – 1.67 (m, 2H), 1.31 – 1.24 (m, 12H), 0.88 (td, *J* = 3.6, 2.2 Hz, 3H).

¹³C NMR (75 MHz, CDCl₃) δ 136.11, 129.04, 127.97, 127.24, 120.96, 37.41, 35.93, 31.80, 29.27, 29.17, 28.97, 27.05, 22.63, 14.09.

2-phenylundecanenitrile¹: ¹H NMR (300 MHz, CDCl₃) δ 7.25 – 7.13 (m, 5H), 3.70 – 3.59 (m, 1H), 1.86 – 1.64 (m, 2H), 1.16 – 1.09 (m, 14H), 0.75 (q, *J* = 2.5 Hz, 3H).

¹³C NMR (75 MHz, CDCl₃) δ 136.13, 129.04, 127.97, 127.24, 120.95, 37.42, 35.95, 31.86, 29.47, 29.32, 29.26, 28.97, 27.06, 22.68, 14.12.

2-Phenyltetradecanenitrile³: ¹H NMR (300 MHz, CDCl₃) δ 7.34 – 7.16 (m, 5H), 3.68 (dd, *J* = 8.4, 6.4 Hz, 1H), 1.87 – 1.71 (m, 2H), 1.19 – 1.16 (m, 20H), 0.80 (s, 3H).

¹³C NMR (**75** MHz, CDCl₃) δ 136.14, 129.03, 127.96, 127.24, 120.92, 37.42, 35.96, 31.94, 29.65, 29.61, 29.52, 29.38, 29.32, 28.98, 27.07, 22.72, 14.14.

3-phenyl-2-(2-(trifluoromethoxy)phenyl)propanenitrile: ¹**H NMR (300 MHz, CDCl₃)** δ 7.49 (dd, *J* = 7.9, 1.9 Hz, 1H), 7.41 – 7.37 (m, 1H), 7.31 (dddd, *J* = 6.8, 4.8, 2.6, 1.4 Hz, 5H), 7.22 – 7.18 (m, 2H), 4.39 (dd, *J* = 8.8, 5.5 Hz, 1H), 3.20 – 3.08 (m, 2H). ¹³C NMR (75 MHz, CDCl₃) δ 146.31, 135.95, 129.93, 129.53, 129.18, 128.76, 128.52, 128.33, 127.60, 127.52, 127.21, 120.00, 119.59, 40.60, 34.30.

3-phenyl-2-(pyridin-3-yl)propanenitrile⁴: ¹H NMR (300 MHz, CDCl₃) δ 8.57 – 8.30 (m, 2H), 7.50 (dt, *J* = 7.9, 1.8 Hz, 1H), 7.27 – 7.15 (m, 4H), 7.07 – 6.98 (m, 2H), 4.05 – 3.95 (m, 1H), 3.11 (qd, *J* = 13.6, 7.3 Hz, 2H). ¹³C NMR (75 MHz, CDCl₃) δ 149.67, 148.85, 135.34, 135.09, 131.04, 129.26, 128.82, 127.73,

123.74, 119.45, 41.78, 37.24.

2-(1H-indol-3-yl)-3-phenylpropanenitrile⁴: ¹H NMR (300 MHz, CDCl₃) δ 8.37 (s, 1H), 7.72 (ddt, *J* = 7.6, 1.5, 0.8 Hz, 1H), 7.42 (s, 2H), 7.37 – 7.32 (m, 3H), 7.26 (ddt, *J* = 7.0, 3.7, 1.7 Hz, 3H), 7.09 (dd, *J* = 2.6, 0.8 Hz, 1H), 4.75 (s, 1H), 4.35 (ddd, *J* = 8.4, 6.0, 0.8 Hz, 1H), 3.42 – 3.29 (m, 2H). ¹³C NMR (75 MHz, CDCl₃) δ 137.02, 136.49, 129.27, 128.65, 127.73, 127.34, 127.09, 125.20, 122.79, 120.23, 118.34, 111.84, 109.90, 65.34, 40.22, 31.53.

2-(3,4-dimethoxyphenyl)-3-phenylpropanenitrile⁶: ¹H NMR (300 MHz, CDCl₃) δ 7.37 – 7.28 (m, 3H), 7.16 – 7.08 (m, 2H), 6.84 – 6.79 (m, 2H), 6.64 (d, *J* = 1.7 Hz, 1H), 3.98 – 3.93 (m, 1H), 3.88 (s, 3H), 3.81 (s, 3H), 3.16 (qd, *J* = 13.5, 7.3 Hz, 2H).

¹³C NMR (75 MHz, CDCl₃) δ 149.13, 148.87, 136.33, 129.34, 128.61, 127.48, 127.35, 120.63, 119.80, 111.31, 110.61, 55.96, 55.92, 42.24, 39.27.

2-(4-fluorophenyl)-5-phenylhexanenitrile: ¹H NMR (400 MHz, CDCl₃) δ 7.37 – 7.30 (m, 2H), 7.28 – 7.21 (m, 3H), 7.20 – 7.15 (m, 2H), 7.10 – 7.03 (m, 2H), 3.79 – 3.63 (m, 1H), 2.84 – 2.65 (m, 1H), 1.95 – 1.67 (m, 4H), 1.29 (d, *J* = 7.0 Hz, 3H).

¹³C NMR (101 MHz, CDCl₃) δ 198.71, 166.90, 164.37, 146.45, 133.40, 133.37, 130.67, 130.58, 128.55, 127.09, 126.27, 115.68, 115.47, 39.53, 36.61, 32.46, 29.73, 22.62.

¹⁹F NMR (282 MHz, CDCl₃) δ -113.88.

2-(m-tolyl)heptanenitrile: ¹**H NMR (300 MHz, CDCl₃)** δ 7.29 – 7.23 (m, 1H), 7.16 – 7.08 (m, 3H), 3.73 (dd, *J* = 8.5, 6.3 Hz, 1H), 2.37 (t, *J* = 0.7 Hz, 3H), 1.99 – 1.76 (m, 2H), 1.56 – 1.42 (m, 2H), 1.36 – 1.28 (m, 4H), 0.91 – 0.85 (m, 3H).

¹³C NMR (**75** MHz, CDCl₃) δ 138.87, 136.03, 128.90, 128.71, 127.90, 124.30, 121.10, 37.36, 35.92, 31.13, 26.78, 22.37, 21.39, 13.96.

2-(naphthalen-2-yl)heptanenitrile: ¹H NMR (300 MHz, CDCl₃) δ 7.84 – 7.80 (m, 2H), 7.77 – 7.73 (m, 1H), 7.60 (dd, *J* = 7.1, 1.3 Hz, 1H), 7.51 – 7.40 (m, 3H), 4.45 (t, *J* = 7.2 Hz, 1H), 1.95 (td, *J* = 8.0, 7.0 Hz, 2H), 1.59 – 0.94 (m, 6H), 0.82 (q, *J* = 2.7 Hz, 3H).

¹³C NMR (**75** MHz, CDCl₃) δ 136.72, 134.05, 131.77, 129.98, 129.35, 128.87, 126.87, 126.08, 125.49, 122.09, 121.21, 34.81, 34.47, 31.16, 27.21, 22.44, 13.97.

2-(4-fluorophenyl)heptanenitrile: ¹H NMR (300 MHz, CDCl₃) δ 7.34 – 7.25 (m, 2H), 7.11 – 7.02 (m, 2H), 3.75 (dd, *J* = 8.5, 6.4 Hz, 1H), 1.97 – 1.76 (m, 2H), 1.53 – 1.39 (m, 2H), 1.35 – 1.27 (m,

4H), 0.91 – 0.86 (m, 3H).

¹³C NMR (75 MHz, CDCl₃) δ 163.97, 160.70, 131.89, 131.85, 128.98, 128.87, 120.77, 116.16, 115.87, 36.70, 35.90, 31.06, 26.63, 22.34, 13.92.

2-(4-(trifluoromethyl)phenyl)heptanenitrile: ¹H NMR (300 MHz, CDCl₃) δ 7.61 – 7.53 (m, 2H), 7.43 – 7.34 (m, 2H), 3.78 (dd, *J* = 8.4, 6.3 Hz, 1H), 1.89 – 1.72 (m, 2H), 1.46 – 1.35 (m, 2H), 1.24 (tq, *J* = 4.0, 2.9 Hz, 4H), 0.84 – 0.79 (m, 3H). ¹³C NMR (75 MHz, CDCl₃) δ 140.03, 128.37, 127.71, 126.16, 126.11, 126.06, 126.01, 125.67,

125.62, 122.03, 120.12, 37.28, 35.73, 31.03, 26.65, 22.31, 13.89.

¹⁹F NMR (282 MHz, CDCl₃) δ -62.71, -63.10.

2-(4-methoxyphenyl)heptanenitrile⁷: ¹H NMR (300 MHz, CDCl₃) δ 7.25 – 7.12 (m, 2H), 6.93 – 6.83 (m, 2H), 3.78 (s, 3H), 3.70 (dd, *J* = 8.4, 6.4 Hz, 1H), 1.96 – 1.70 (m, 2H), 1.36 – 1.23 (m, 6H), 0.89 – 0.84 (m, 3H).

¹³C NMR (**75** MHz, CDCl₃) δ 159.26, 128.33, 128.07, 121.24, 114.38, 55.30, 36.55, 35.89, 31.10, 26.65, 22.36, 13.92.

2-(3,4-dimethoxyphenyl)heptanenitrile: ¹**H NMR (300 MHz, CDCl₃)** δ 6.83 – 6.80 (m, 2H), 6.78 (dd, *J* = 2.0, 0.8 Hz, 1H), 3.85 (s, 3H), 3.83 (s, 3H), 3.68 (dd, *J* = 8.5, 6.5 Hz, 1H), 1.93 – 1.72 (m, 2H), 1.32 – 1.22 (m, 6H), 0.84 (q, *J* = 4.0 Hz, 3H).

¹³C NMR (**75** MHz, CDCl₃) δ 149.32, 148.74, 128.49, 121.15, 119.54, 111.41, 110.26, 55.97, 55.92, 36.93, 35.85, 31.08, 26.68, 22.34, 13.90.

2-(4-fluorophenyl)undecanenitrile: ¹H NMR (300 MHz, CDCl₃) δ 7.34 – 7.26 (m, 2H), 7.12 – 7.02 (m, 2H), 3.80 – 3.69 (m, 1H), 1.97 – 1.75 (m, 2H), 1.32 – 1.23 (m, 12H), 0.89 – 0.85 (m, 3H).
¹³C NMR (75 MHz, CDCl₃) δ 163.97, 160.69, 131.89, 131.85, 130.73, 128.98, 128.87, 120.77, 116.15, 115.87, 115.76, 36.70, 35.94, 31.78, 29.25, 29.14, 28.92, 26.96, 22.62, 14.08.
¹⁹F NMR (282 MHz, CDCl₃) δ -114.00.

2-(naphthalen-2-yl)dodecanenitrile: ¹H NMR (300 MHz, CDCl₃) δ 7.93 – 7.88 (m, 2H), 7.84 (dt, *J* = 8.4, 1.0 Hz, 1H), 7.69 (dd, *J* = 7.2, 1.3 Hz, 1H), 7.61 – 7.48 (m, 3H), 4.62 – 4.47 (m, 1H), 2.08 (d, *J* = 8.3 Hz, 2H), 1.27 (t, *J* = 3.8 Hz, 14H), 0.89 (d, *J* = 2.5 Hz, 3H).

¹³C NMR (**75** MHz, CDCl₃) δ 134.05, 131.78, 129.99, 129.34, 128.86, 128.84, 126.86, 126.07, 125.49, 122.10, 121.20, 34.84, 34.47, 31.86, 29.48, 29.37, 29.27, 29.02, 27.52, 22.68, 14.13.

2-(4-fluorophenyl)dodecanenitrile: ¹H NMR (300 MHz, CDCl₃) δ 7.26 – 7.19 (m, 2H), 7.02 – 6.95 (m, 2H), 3.68 (dd, *J* = 8.4, 6.4 Hz, 1H), 1.90 – 1.71 (m, 2H), 1.19 (t, *J* = 3.8 Hz, 14H), 0.80 (d, *J* = 2.7 Hz, 3H).

¹³C NMR (75 MHz, CDCl₃) δ 198.95, 167.31, 163.96, 160.69, 133.54, 131.91, 131.86, 130.72, 130.60, 128.97, 128.86, 120.76, 116.18, 116.14, 115.90, 115.85, 115.74, 115.45, 36.69, 35.94, 31.83, 29.44, 29.29, 29.23, 28.92, 26.96, 22.66, 14.09.

¹⁹F NMR (282 MHz, CDCl₃) δ -113.99.

2-(4-methoxyphenyl)dodecanenitrile⁷: ¹H NMR (300 MHz, CDCl₃) δ 7.25 – 7.18 (m, 2H), 6.92 – 6.85 (m, 2H), 3.79 (s, 3H), 3.70 (dd, *J* = 8.4, 6.5 Hz, 1H), 1.94 – 1.72 (m, 2H), 1.29 – 1.24 (m, 14H), 0.88 (d, *J* = 4.3 Hz, 3H).

¹³C NMR (**75** MHz, CDCl₃) δ 159.25, 128.34, 128.08, 121.24, 114.37, 55.30, 36.57, 35.96, 31.85, 29.46, 29.32, 29.25, 28.97, 26.99, 22.67, 14.11.

2-(3,4-dimethoxyphenyl)dodecanenitrile: ¹H NMR (**300** MHz, CDCl₃) δ 6.84 – 6.81 (m, 2H), 6.80 (dt, *J* = 2.1, 0.7 Hz, 1H), 3.91 (d, *J* = 2.1 Hz, 1H), 3.86 (d, *J* = 6.9 Hz, 6H), 1.92 – 1.76 (m, 2H), 1.24 (d, *J* = 4.1 Hz, 14H), 0.86 (d, *J* = 1.2 Hz, 3H).

¹³C NMR (**75** MHz, CDCl₃) δ 149.32, 148.72, 128.49, 121.16, 119.54, 111.36, 110.20, 55.96, 55.92, 36.97, 35.94, 31.83, 29.44, 29.31, 29.23, 28.96, 27.04, 22.65, 14.09.

2-(1H-indol-3-yl)octadecanenitrile: ¹**H NMR (300 MHz, CDCl₃)** δ 8.44 (s, 1H), 7.55 (ddt, *J* = 7.7, 1.5, 0.7 Hz, 1H), 7.31 (t, *J* = 2.3 Hz, 1H), 7.17 – 7.13 (m, 1H), 7.12 – 7.09 (m, 1H), 7.05 – 7.03 (m, 1H), 3.96 (ddd, *J* = 7.5, 6.8, 0.7 Hz, 1H), 1.98 – 1.88 (m, 2H), 1.21 – 1.18 (m, 14H), 0.81 (d, *J* = 1.6 Hz, 3H).

¹³C NMR (**75** MHz, CDCl₃) δ 136.54, 125.32, 122.60, 122.38, 121.44, 119.98, 118.39, 111.76, 110.56, 33.98, 31.90, 29.54, 29.43, 29.31, 29.05, 28.93, 27.27, 22.71, 14.16.

2-(1H-benzo[d]imidazol-2-yl)octadecanenitrile: ¹**H NMR (300 MHz, CDCl₃)** δ 7.91 (d, *J* = 8.0 Hz, 1H), 7.56 (d, *J* = 7.7 Hz, 1H), 7.44 – 7.33 (m, 2H), 3.31 (dd, *J* = 7.8, 7.1 Hz, 2H), 1.88 – 1.75 (m, 2H), 1.37 – 1.20 (m, 14H), 0.89 – 0.85 (m, 3H).

¹³C NMR (**75** MHz, CDCl₃) δ 147.61, 143.42, 126.44, 123.79, 121.89, 38.35, 31.88, 29.46, 29.43, 29.29, 29.22, 24.01, 22.67, 14.11.

S7. References

1. J. J. Li, Y. X. Liu, W. J. Tang, D. Xue, C. Q. Li, J. L. Xiao and C. Wang, *Chem. Eur. J.*, 2017, 23, 14445-14449.

2. M. L. Buil, M. A. Esteruelas, J. Herrero, S. Izquierdo, I. M. Pastor, M. Yus, *ACS Catal.* 2013, **3**, 2072-2075.

- 3. S. Thiyagarajan and C. Gunanathan, ACS Catal., 2017, 7, 5483-5490.
- W. Ma, S. Y. Cui, H. M. Sun, W. J. Tang, D. Xue, C. Q. Li, J. Fan, J. L. Xiao and C. Wang, *Chem. Eur. J*, 2018, 24, 13118-13123.
- R. Grigg, T. R. Mitchell, S. Sutthivaiyakit and N. Tongpenyai, *Tetrahedron Lett.*, 1981, 22, 4107-4110.
- 6. S. Bera, A. Bera and D. Banerjee, Chem. Comm., 2020, 56, 6850-6853.
- 7. K. Paudel, S. Xu and K. Y. Ding, J. Org. Chem., 2020, 85, 14980-14988.

S8. NMR Spectra

135.68 129.95 128.95 128.05 128.05 127.58 127.58 127.58

- 77.55 CDCl3 - 77.13 CDCl3 - 76.71 CDCl3

×41.52 +0.63 +0.33

CN CN

220127.322.10.fid Ma/ ZM20-7 Au19F CDCl3 {C:\Bruker\TopSpin3.6.2} 2201 22

120 110 100 90 80 70 60 50 40 30 20 10 0 -10 -20 -30 -40 -50 -60 -70 -80 -90 -100 -110 -120 -130 -140 -150 -160 -170 -180 -190 -200 -210 -220 f1 (ppm)

220304.f342.10.fid Zhuang Ma ZM20-203 PROTON CDCI3 {C:\Bruker\TopSpin3.6.2} 2203 42

220203.323.10.fid Ma/ ZM20-18-1 Au1H CDCl3 {C:\Bruker\TopSpin3.6.2} 2202 23 0 CN Ĩ 0ſ } }

ſ

€0.92
€0.76
55.96
38.80
37.33

220304.f343.10.fid Zhuang Ma ZM20-204 PROTON CDCl3 {C:\Bruker\TopSpin3.6.2} 2203 43

210721.309.11.fid		888	
Zhuang Ma ZM 20-27	ω 4 k 4 Ω	888	
Au13C CDCl3 {C:\Bruker\TopSpin3.6.2} 2107 9	136.1 127.9	77.53 77.10 76.68	37.42 33.95 29.26 22.26 20.26
		\searrow	
O			

CV₀ F‡F

210824.312.10.fid Zhuang Ma ZM 20-62 Au1H CDCl3 {C:\Bruker\TopSpin3.6.2} 2108 12 CN Ô Q

137.02 136.49 129.27 129.27 127.34 127.34 127.34 127.34 125.20 122.79 125.20 12 77.58 CDCl3 77.16 CDCl3 76.74 CDCl3

--- 65.34

220214.312.11.fid Zhuang Ma ZM 20-112 Au13C CDCl3 {C:\Bruker\TopSpin3.6.2} 2202 12

 $< ^{149.13}_{148.87}$

136.33 129.34 129.34 127.48 127.48 127.35 120.63 119.80 77.52 CDCl3 77.10 CDCl3 76.67 CDCl3

 $< \frac{55.96}{55.92}$

220221.305.11.fid
Zhuang Ma, ZM20, 64
Zhuang Ma ZM20-64
Au13C CDCl3 {C:\Bruker\TopSpin3.6.2} 2202 5

220127.325.10.fid Ma/ ZM20-36 Au19F CDCl3 {C:\Bruker\TopSpin3.6.2} 2201 25

120 110 100 90 80 70 60 50 40 30 20 10 0 -10 -20 -30 -40 -50 -60 -70 -80 -90 -100 -110 -120 -130 -140 -150 -160 -170 -180 -190 -200 -210 -220 f1 (ppm)

210812.307.11.fid Zhuang Ma ZM 20-74 Au13C CDCl3 {C:\Bruker\TopSpin3.6.2} 2108 7	163.97	131.89 131.85 128.98 128.87 128.87 128.77 116.16 115.87	77.47 CDCI3 77.05 CDCI3 76.63 CDCI3	35,70 35,70 31,00 31,00 26,63 22,63 22,63 22,34 22,34 22,34 22,34 22,34 22,34 22,34 22,34 22,34 22,34 22,34 22,34 22,34 23,57 22,34 23,57 23,570 24,570 25,570 20,5700 20,5700 20,5700 20,57000
E CN		$\forall F \lor \forall$		12711

270 260 250 240 230 220 210 200 190 180 170 160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 0 -10 f1 (ppm)

270 260 250 240 230 220 210 200 190 180 170 160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 0 -10 f1 (ppm) 220127.324.10.fid Ma/ ZM20-76 Au19F CDCl3 {C:\Bruker\TopSpin3.6.2} 2201 24

120 110 100 90 80 70 60 50 40 30 20 10 0 -10 -20 -30 -40 -50 -60 -70 -80 -90 -100 -110 -120 -130 -140 -150 -160 -170 -180 -190 -200 -210 -220 f1 (ppm)

 $< \frac{-62.71}{-63.10}$

120 110 100 90 80 70 60 50 40 30 20 10 0 -10 -20 -30 -40 -50 -60 -70 -80 -90 -100 -110 -120 -130 -140 -150 -160 -170 -180 -190 -200 -210 -220 f1 (ppm)

220127.320.10.fid Ma/ ZM20-83 Au19F CDCl3 {C:\Bruker\TopSpin3.6.2} 2201 20

120 110 100 90 80 70 60 50 40 30 20 10 0 -10 -20 -30 -40 -50 -60 -70 -80 -90 -100 -110 -120 -130 -140 -150 -160 -170 -180 -190 -200 -210 -220 f1 (ppm)

																								_
21	0 20	00	190	180	170	160	150	140	130	120	110	100	90	80	70	60	50	40	30	20	10	0	-10	
f1 (ppm)																								