Supporting Information

Electronic engineering and oxygen vacancy modification of $La_{0.6}Sr_{0.4}FeO_{3-\delta}$ perovskite oxide by low-electronegativity sodium doping for efficient reversible CO_2/CO fueled solid oxide cells

Wanbin Lin^a, Yihang Li^{b*}, Manish Singh^c, Huibin Zhao^a, Rui Yang^a, Pei-Chen Su^{d*}, Liangdong Fan^{a*}

^a Department of New Energy Science & Technology, College of Chemistry and Environmental Engineering,

Shenzhen University, Shenzhen 518060, Guangdong, China.

^b Interdisciplinary Research Center of Smart Sensors, Academy of Advanced Interdisciplinary Research, Xidian

University, Xi'an 710026, China.

^c Department of Metallurgical and Materials Engineering, Indian Institute of Technology Patna, Bihta, Bihar

801106, India

^d School of Mechanical and Aerospace Engineering, Nanyang Technological University, 50 Nanyang Avenue,

Singapore 639798, Singapore.

*Corresponding Authors: Email: fanld@szu.edu.cn; liyihang@xidian.edu.cn; peichensu@ntu.edu.sg

Totally 18 figures and 5 tables

Fig. S1. The profiles of XRD refinement of a) LSF and b) NaLSF0.20 powders.

 $Fig. \ S2. \ {\rm HR-TEM} \ {\rm microscope} \ {\rm of} \ {\rm LSF} \ {\rm powder}.$

Fig. S3. The SEM of microscope structure of a) LSF, b) NaLF0.10, and c) NaLSF0.20 powders.

 $Fig. \ S4. \ Elements' \ content \ obtained \ by \ EDX.$

Fig. S5. XPS full survey spectra of all powders.

Fig. S6. Physical properties of LSF and NaLSF0.10: a) XRD patterns after sintered at 50% CO-CO₂ atmosphere, b) XRD patterns of both samples in Figure 4a after successively sintered under air atmosphere for 10 h.

Fig. S7. Chemical properties of LSF and NaLSF0.10 after sintered at 50% CO-CO₂ atmosphere and air atmosphere for 10 h: a) the Fourier infrared spectra, b) Raman spectra.

Fig. S8. EIS curves of symmetrical cells with a) LSF, b) NaLSF0.10, and c) NaLSF0.20 cathodes from 750 °C to 850 °C at 50% CO-CO₂ atmosphere.

Fig. S9. DRT curves of symmetrical cells with a) LSF, b) NaLSF0.10, and c) NaLSF0.20 cathodes from 750 °C to 850 °C at 50% CO-CO₂ atmosphere.

Fig. S10. SEM images of the cross-sectional of SOECs before the test with NaLSF0.10 cathode and LSCF-SDC

anode.

Fig. S11. I-V curves of SOECs with a) LSF, b) NaLSF0.10, c) NaLSF0.20, and d) NaLSF0.10 (200 μm electrolyte) cathodes from 700 °C to 850 °C in pure CO₂ atmosphere.

Fig. S12. EIS curves of SOECs with a) LSF, b) NaLSF0.10, c) NaLSF0.20, and d) NaLSF0.10 (200 μm electrolyte) cathodes from 700 °C to 850 °C at 1.3 V in pure CO₂ atmosphere.

Fig. S13. EIS curves of SOECs with a) LSF, b) NaLSF0.10, c) NaLSF0.20, and d) NaLSF0.10 (200 μm electrolyte) cathodes from 1.2 V to 1.4 V at 800 °C in pure CO₂ atmosphere.

Fig. S14. a) and b) SEM images of the cross-sectional of SOECs with the electrolyte had been polished.

Fig. S15. Comparison of performance for the SOECs with NaLSF0.10 cathode in this work with reported various cathodes at 800 °C and 1.5 V.

Fig. S16. a) I-V curves, b) EIS at 1.3 and 800 °C.

Fig. S17. SEM images of the cross-sectional of RSOCs after the test with NaLSF0.10-SDC cathode and LSCF-SDC anode.

Fig. S18. Comparison of performance for the RSOCs with NaLSF0.10-SDC cathode in this work with reported various cathodes at 800 °C/850 °C and 1.5 V (SOEC mode) or 800 °C/850 °C and 0.6 V (SOFC mode).

	LSF	NaLSF0.10	NaLSF0.20
a (Å)	5.5252	5.5267	5.5302
b (Å)	5.5252	5.5267	5.5302
c (Å)	13.4409	13.4340	13.4434
V (Å ³)	355.348	355.359	356.060
wR_{p} (%)	8.31	8.62	8.91
R _p (%)	6.62	6.67	7.00
Chi ²	2.196	2.389	2.466

Table S1. Structural Refinement Results for LSF, NaLSF0.10, and NaLSF0.20 powders.

Samples — O	E	B.E. O <i>ls</i> (eV)		O _{lat} O _{ads} +O _{H/carbonate}		, , , , , , , , , , , , , , , , , , , ,
	O _{lat}	O _{ads}	O _{H/carbonate}	(at.%)	(at.%)	O _{ads} +O _{H/carbonate} /O _{lat}
LSF	528.43	530.03 530.08	532.73	50.76	43.65	0.97
NaLSF0.10	528.13	529.28 530.58	531.43	35.08	48.07	1.85
NaLSF0.20	528.08	529.48 530.73	531.38	26.08	48.13	2.62

Table S2. The composition of lattice oxygen and surface adsorbed oxygen species in LSF,

NaLSF0.10, and NaLSF0.20 samples.

Concentration (%)	LSF	NaLSF0.10	NaLSF0.20
Fe ²⁺	50.25	51.28	53.19
Fe ³⁺	35.17	35.39	36.17
Fe ⁴⁺	14.58	13.33	10.64

Table S3. The composition of Fe²⁺, Fe³⁺, and Fe⁴⁺ fitting by Fe 2p spectra in LSF, NaLSF0.10,

and NaLSF0.20 samples.

Cathodes	Electrolytes//anodes	Current densities (A cm ⁻²)	References	
Sr ₂ Fe _{1.5} Mo _{0.5} O _{3-δ}	LDC/LSGM//LSCF-SDC	1.50	Adv Energy Mater 2021, 11, 2102845	1
$CoFe@Sr_2Fe_{1.35}Co_{0.2}Mo_{0.45}O_{6-\delta}\text{-}GDC$	LDC/LSGM//BSCF-GDC	1.05	Adv Mater 2020, 32, 1906193	<u>2</u>
$(La_{0.2}Sr_{0.8})_{0.95}Ti_{0.65}Mn_{0.35}O_{3-\delta}$	LDC/LSGM//LSM	0.60	A 1.C (1.D 2020 272 1100C0	<u>3</u>
$(La_{0.2}Sr_{0.8})_{0.95}Ti_{0.55}Mn_{0.35}Cu_{0.10}O_{3\text{-}\delta}$	LDC/LSGM//LSM	1.10	Appi Catal B 2020, 272, 118968	
$CoFe-La_{0.4}Sr_{0.6}Co_{0.2}Fe_{0.7}Mo_{0.1}O_{3-\delta}$	LDC/LSGM//BSCF-GDC	2.02	Angew Chem Int Ed 2020, 59, 15968	<u>4</u>
$FeNi@La_{0.6}Ca_{0.4}Fe_{0.8}Ni_{0.2}O_{3-\delta}$	GDC/YSZ/GDC//LSCF-GDC	0.80	J Mater Chem A 2019, 7, 6395	<u>5</u>
$La_{0.43}Ca_{0.37}Ti_{0.94}Ni_{0.06}O_{3-\delta}\text{-}Ce$	LDC/LSGM//LSCF-GDC/LSCF	0.77	J Mater Chem A 2022, 10, 20350	<u>6</u>
$Ni@Sr_2Fe_{1.5}Mo_{0.5}O_{6-\delta}-Ni@GDC$	LSGM//PBSCF-GDC	1.72	Appl Catal B 2023, 337, 122968	7
$Sr_2Fe_{1.3}Zr_{0.2}Mo_{0.5}O_{6-\delta}$	GDC//LSGM//LSCF	0.90	Appl Catal B 2022, 317, 121754	<u>8</u>
$Sr_{1.97}Fe_{1.5}Mo_{0.5}Ni_{0.1}O_{6-\gamma}$	SDC/LSGM//LSCF-SDC	1.03	ACS Appl Mater. Interfaces 2022, 14, 9138	<u>9</u>
$La_{0.5}Sr_{0.5}FeO_{3-\delta}$ -Pd	YSZ//LSM-YSZ	0.70	Nano Energy 2020 , 71, 104598	<u>10</u>
$RuFe@Sr_2Fe_{1.4}Ru_{0.1}Mo_{0.5}O_{6-\delta}\text{-}GDC$	LDC/LSGM/BSCF-GDC	1.87	Nat Commun, 2021 , 12, 5665	<u>11</u>
$Sr_2Fe_{1.5}Mo_{0.5}O_{6-\delta}F_{0.1}$	LDC/LSGM//LSCF-SDC	1.36	Adv Energy Mater 2019 , 9,1803156	<u>12</u>
$Sr_{2}Fe_{1.45}Ir_{0.05}Mo_{0.5}O_{6-\delta}$ -GDC	LDC/LSGM//BSCF-GDC	1.29	Natl Sci Rev 2023, 10, nwad078	<u>13</u>
$Sr_2FeMo_{2/3}Mg_{1/3}O_{6-\delta}$	LDC/LSGM/LDC//LSCF-SDC	1.40	Nano Energy 2021 , 82, 105707	<u>14</u>
$La_{0.5}Sr_{0.5}Fe_{0.9}Ti_{0.1}O_{3-\delta}$	LSGM//LSCF-GDC	1.35	Ceram Inter 2022, 48, 4223	<u>15</u>
$La_{0.55}Sr_{0.45}Fe_{0.9}Mo_{0.1}O_{3\text{-}\delta}$	LSGM//LSC	1.60	Chem Eng J 2022 , 433, 133632	<u>16</u>
$La_{0.6-x}Li_xSr_{0.4}Co_{0.7}Mn_{0.3}O_{3-\delta}$	LSGM//LSCF	0.99	Small 2023, 2303305	<u>17</u>
$Ce_{0.9}M_{0.1}O_{2-\delta}$ infiltrated LSCrF-GDC	YSZ//LSM-YSZ	0.60	J Energy Chem 2020 , 40, 46	<u>18</u>
$(La_4Sr_4)_{0.9}Ti_{7.2}Ni_{0.8}O_{26}$	YSZ//LSCF	1.20	J Energy Chem 2023 , 84, 219	<u>19</u>
$Sr_{2}Fe_{1.4}Zn_{0.1}Mo_{0.5}O_{6^{-\delta}}$	LSGM/BSCF	~1.50	<i>Green Chem</i> 2023 , DOI: 10.1039/D3GC03518B	<u>20</u>
NaLSF0.10	LSGM//LSCF-SDC	1.71		
NaLSF0.10-SDC	LSGM//LSCF-SDC	1.81	1 IIIS WOFK	

Table S4. Comparison of current densities for CO₂ electrolysis at 800 °C and 1.5 V.

 $GDC: Gd_{0.2}Ce_{0.8}O_{2-\delta}; LDC: La_{0.4}Ce_{0.8}O_{2-\delta}; SDC: Sm_{0.2}Ce_{0.8}O_{2-\delta}; LSM: La_{0.8}Sr_{0.2}MnO_{3-\delta}; LSCF: La_{0.6}Sr_{0.4}Co_{0.2}Fe_{0.8}O_{3-\delta}; YSZ (8\% \text{ nickel-yttria stabilized zirconia}), \\BSCF: Ba_{0.5}Sr_{0.5}Co_{0.8}Fe_{0.2}O_{3-\delta}, PBSCF: PrBa_{0.5}Sr_{0.5}Co_{1.5}Fe_{0.5}O_{5+\delta}.$

Freel de store de	Electualy teg//cir clastrado	Current densities (A cm ⁻²)		Deferrer	
F uer electrode	Electrolytes//air electrode	SOEC@1.5V	SOFC@0.6V	Keterences	
$Sr_{1.97}Fe_{1.5}Mo_{0.5}Ni_{0.1}O_{6-\gamma}$	Ve7//sdc//lsce	1.03	0.70	ACS Appl Mater. Interfaces 2022, 14,	9
Ni-YSZ (70% CO-CO ₂)	I SZ//SDC//LSCF	0.91	0.95	9138	2
СоFe-Sr ₂ Fe _{7/6} Mo _{0.5} Co _{1/3} O _{6-δ} in 2:1 CO-CO ₂	SDC/YSZ//LSM-SDC	0.76	0.43	Sci China Mater 2021 64, 1114	<u>21</u>
La _{0.6} Sr _{0.4} Fe _{0.8} Ni _{0.2} O _{3-δ} -GDC in 30% CO-CO ₂	YSZ/GDC//LSCF-GDC	0.87	0.25	J Mater Chem A 2017, 5, 2673	<u>22</u>
$La_{0.3}Sr_{0.7}Fe_{0.7}Ti_{0.3}O_{3-\delta}$ in 30% CO-CO ₂	$SDC/YSZ/SDC//La_{0.3}Sr_{0.7}Fe_{0.7}Ti_{0.3}O_3$	0.25	0.10	Electrochimica Acta 2020, 332, 135464	<u>23</u>
$FeNi@La_{0.6}Sr_{0.4}Fe_{0.8}Ni_{0.2}O_{3-\delta}\text{-}GDC$	GDC/YSZ/GDC//LSCF-GDC	0.60	0.50	ACS Catalysis 2016, 6, 6219-6228	<u>24</u>
$Sr_2Fe_{1.5}Mo_{0.5}O_{6-\delta}$ -YSZ	YSZ//SFM-YSZ	0.60	0.40	Solid State Ionics, 2018, 319 98-104	<u>25</u>
$CoFe@Pr_{0.4}Sr_{0.6}Co_{0.2}Fe_{0.7}Mo_{0.1}O_{3-\delta}$ -GDC in					
30% CO-CO ₂	CDC/VSZ/CDC//LSCE CDC	0.80 (850°C)	0.25 (850°C)	I Maton Cham 1 2016 5 2672	<u>26</u>
$Pr_{0.4}Sr_{0.6}Co_{0.2}Fe_{0.7}Mo_{0.1}O_{3-\delta}$ -GDC in 30%	GDC/ ISZ/GDC//LSCF-GDC	0.65 (850°C)	0.14 (850°C)	J Mater Chem A 2010 , <i>5</i> , 2075	
CO-CO ₂					
Co@La _{0.6} Sr _{0.4} Co _{0.7} Mn _{0.3} O ₃ in 30% CO-CO ₂	GDC/LSGM//LSCF-GDC	0.80	0.20	Appl Catal B 2019, 272, 147-156	<u>27</u>
$CoNi@La_{0.6}Sr_{0.4}Co_{0.5}Ni_{0.2}Mn_{0.3}O_{3}$	GDC/LSGM//LSCF-GDC	0.75	0.15	J Mater Chem A 2020, 8, 138	<u>28</u>
NaLSF0.10-SDC	LSGM//LSCF-SDC	1.59	0.48	This work	

Table S5. Comparison of performance of RSOCs for CO-CO₂ at 800 °C and 1.5 V.

Noted, if not specific statement, the applied fuel electrode gas atmosphere is 50% CO-CO₂

References

- 1. X. Xi, J. Liu, W. Luo, Y. Fan, J. Zhang, J. Luo and X. Fu, *Adv. Energy Mater.*, 2021, **11**, 2102845.
- H. Lv, L. Lin, X. Zhang, Y. Song, H. Matsumoto, C. Zeng, N. Ta, W. Liu, D. Gao, G. Wang and X. Bao, *Adv. Mater.*, 2020, **32**, e1906193.
- X. Yang, K. Sun, M. Ma, C. Xu, R. Ren, J. Qiao, Z. Wang, S. Zhen, R. Hou and W. Sun, *Appl. Catal. B*, 2020, 272, 118968.
- H. Lv, T. Liu, X. Zhang, Y. Song, H. Matsumoto, N. Ta, C. Zeng, G. Wang and X. Bao, *Angew. Chem. Int. Ed.*, 2020, **59**, 15968-15973.
- Y. Tian, L. Zhang, Y. Liu, L. Jia, J. Yang, B. Chi, J. Pu and J. Li, J. Mater. Chem. A, 2019, 7, 6395-6400.
- Z. Li, M. Peng, Y. Zhu, Z. Hu, C. Pao, Y. Chang, Y. Zhang, Y. Zhao, J. Li and Y. Sun, *J. Mater. Chem. A*, 2022, 10, 20350-20364.
- F. Hu, Y. Ling, S. Fang, L. Sui, H. Xiao, Y. Huang, S. Wang, B. He and L. Zhao, *Appl. Catal.* B, 2023, 337, 122968.
- L. Zhang, W. Sun, C. Xu, R. Ren, X. Yang, J. Qiao, Z. Wang, S. Zhen and K. Sun, *Appl. Catal. B*, 2022, **317**, 121754.
- 9. Y. Li, Y. Li, S. Zhang, C. Ren, Y. Jing, F. Cheng, Q. Wu, P. Lund and L. Fan, ACS Appl. Mater. Interfaces, 2022, 14, 9138-9150.
- Y. Zhou, L. Lin, Y. Song, X. Zhang, H. Lv, Q. Liu, Z. Zhou, N. Ta, G. Wang and X. Bao, *Nano Energy*, 2020, **71**, 104598.
- H. Lv, L. Lin, X. Zhang, R. Li, Y. Song, H. Matsumoto, N. Ta, C. Zeng, Q. Fu, G. Wang and X. Bao, *Nat. Commun.*, 2021, 12, 5665.
- Y. Li, Y. Li, Y. Wan, Y. Xie, J. Zhu, H. Pan, X. Zheng and C. Xia, *Adv. Energy Mater.*, 2019, 9, 1803156.
- Y. Shen, T. Liu, R. Li, H. Lv, N. Ta, X. Zhang, Y. Song, Q. Liu, W. Feng, G. Wang and X. Bao, *Natl. Sci. Rev.*, 2023, 10, nwad078.
- 14. X. Xi, J. Liu, Y. Fan, L. Wang, J. Li, M. Li, J. Luo and X. Fu, *Nano Energy*, 2021, 82, 105707.
- Y. Hou, L. Wang, L. Bian, Q. Zhang, L. Chen and K.-c. Chou, *Ceram. Int.*, 2022, 48, 4223-4229.

- 16. D. He, W. Ruan, J. Li, J. Ni and C. Ni, *Chem. Eng. J.*, 2022, **433**, 133632.
- 17. W. Lin, W. Su, Y. Li, T. Chiu, M. Singh, Z. Pan and L. Fan, *Small*, 2023, **19**, 2303305.
- 18. Z. Huang, Z. Zhao, H. Qi, X. Wang, B. Tu and M. Cheng, J. Energy Chem., 2020, 40, 46-51.
- Z. Liu, J. Zhou, Y. Sun, X. Yue, J. Yang, L. Fu, Q. Deng, H. Zhao, C. Yin and K. Wu, *J. Energy Chem.*, 2023, 84, 219-227.
- S. Liu, M. Yang, R. Xu, X. Xiang, G. Yang, H. Xu, G. Xiao, R. Ran, W. Zhou and Z. Shao, Green Chem., 2023, 10.1039/D3GC03518B.
- Y. Li, M. Singh, Z. Zhuang, Y. Jing, F. Li, K. Maliutina, C. He and L. Fan, *Sci. China Mater.*, 2021, 64, 1114-1126.
- 22. S. Liu, Q. Liu and J.-L. Luo, *Journal of Materials Chemistry A*, 2017, **5**, 2673-2680.
- Z. Cao, Z. Wang, F. Li, K. Maliutina, Q. Wu, C. He, Z. Lv and L. Fan, *Electrochim. Acta*, 2020, 332, 135464.
- 24. S. Liu, Q. Liu and J.-L. Luo, ACS Catalysis, 2016, 6, 6219-6228.
- 25. Y. Li, S. Zou, J. Ju and C. Xia, Solid State Ion., 2018, 319, 98-104.
- 26. S. Liu, Q. Liu and J.-L. Luo, *Journal of Materials Chemistry A*, 2016, 4, 17521-17528.
- S. Park, Y. Kim, H. Han, Y. Chung, W. Yoon, J. Choi and W. Kim, *Appl. Catal. B*, 2019, 248, 147-156.
- 28. S. Park, Y. Kim, Y. Noh, T. Kim, H. Han, W. Yoon, J. Choi, S.-H. Yi, W.-J. Lee and W. B. Kim, *Journal of Materials Chemistry A*, 2020, **8**, 138-148.