Supporting Information

Composite Fibers as a Multifunctional Catalyst Support for the Upgradation of Ligninbased Chemicals

Zuzhi Li^{a,b}, Ya Ma^{a,b}, Xingjie Guo^{a,b}, Yang Cao^c, Qian Jiang^{a,b}, Mi Gao^{a,b}, Xudong Liu^d, Daniel CW Tsang^{c,*}, Zhicheng Jiang^{a,b,*}, Bi Shi^{a,b}

^a College of Biomass Science and Engineering, Sichuan University, Chengdu 610065, China

^b National Engineering Research Center of Clean Technology in Leather Industry, Sichuan University, Chengdu 610065, China

^c Department of Civil and Environmental Engineering, The Hong Kong University of Science and Technology, Clear Water Bay, Hong Kong, China

^d State Key Laboratory of Utilization of Woody Oil Resource, Hunan Academy of Forestry,

Changsha, China

Table S1. Molecular weight of tannin.			
Mn	Mw	DPI	
1426	1575	1.10	

	1		1	
Catalyst	Pd/8% PAN-Tan	Pd/12% PAN-Tan	Pd/16% PAN-Tan	16% PAN
Fiber	458 nm	81 nm	47 nm	9 nm
diameters	450 IIII	01 1111	7/ 1111	7 mm
particle sizes	2.52 nm	3.42 nm	2.86 nm	

Table S2. Dispersion of diameters of fibers and Pd particles.

Spinning solution	16% PAN	16% PAN-Tan
Specific conductance (µS/cm)	182.1	274.5

Table S4. T_{onset} and T_{max} of the fibers based on thermogravimetric analysis.				
Catalyst	16% PAN	8% PAN-Tan	12% PAN-Tan	16% PAN-Tan
Tonset (°C)	286	288	290	284
T _{max} (°C)	293	297	296	292

Table S5. Catalyst recycling.						
Number of reuses	1	2	3	4	5	
VAL yield (%)	97.3	96.9	97.8	96.1	98.1	

Table S6. Adsorption of Pd^{2+} on the fibers.				
Catalyst	160/ DAN	Pd/8% PAN-	Dd/120/ DAN Tor	Pd/16% PAN-
	10% PAN	Tan	Pd/12% PAIN-1an	Tan
Adsorption rate (%)	76.8	88.9	93.0	97.3

Figure S1. Radical distribution functions in PAN in different systems.

Figure S2. Fluorescence spectra of 8% PAN-Tan fibers.

Figure S3. XPS O1s spectra of catalyst before and after Pd loading

Figure S4. XPS pattern of the catalyst after the fixed bed reaction.

Figure S5. Diagram of catalyst before and after hydrogen overflow test.