Supplementary Information 1 (SP1).

European/UK projects oriented to the decarbonization of the lime industry

STRATEGY	AREA	NAME	MAIN GOAL	Period
CARBON DIRECT AVOIDANCE	ENERGY EFFICIENCY	WHEATREC4PG: Waste Heat Recovery for Power Generation Lime: Lhoist	Recovers 4 MW of thermal power from a rotary kiln exhaust gas, and converts it to 0.5 MWe of low carbon electrical power	2012-2013
	ENERGY EFFICIENCY	CHP GENERATION: Combined Heat and Power (CHP) for Limestone Milling Lime: Carmeuse	Energy recovery from drying / heating off gases: Instead using 40% of natural gas' thermal energy for producing electrical power, in the combined heat and power more than 70% of thermal energy is utilized	2014-2017
	RENEWABLE ENERGY SOURCES	ENERGY OPTIMIZATION: Reduced energy consumption through optimized processes and capacity use Lime: Nordkalk	Biogas production from by-products of the food industry slaughterhouses and livestock- breeding as well as wastewater sludge	2011-2016
	RENEWABLE ENERGY SOURCES	ADIREN4LIME: Anaerobic Digestion as Renewable Energy for the Lime Industry Lime: Singleton Birch	Production of biogas from biomass in anaerobic conditions and used as fuel for the lime kiln.	2014-2015
	RENEWABLE ENERGY	HYDROGEN FUEL ENERGY	Use of hydrogen as an alternative fuel	2019-2022

	SOURCES	INNOVATION:	for high calcium	
		Alternatives to	lime	
		natural gas for	manufacturing.	
		high calcium		
		lime		
		manufacturing		
		Lime: Mineral		
		Products		
		Association / British Lime		
		Association		
	RENEWABLE	BIOXYSORB:	Emissions of 1 st	2013-2016
	ENERGY	Biomass co-	and 2 nd generation	
	SOURCES	combustion	biomasses,	
		under both air-	evaluation of	
		and oxy-fuel	sorbents and plant	
		conditions	modifications for	
			high thermal share	
		Lime: Lhoist	biomass co-	
	RENEWABLE	ENERGY	combustion 13.200 solar panels	2014-2017
	ENERGY	GENERATION:	will supply annually	2014-2017
	SOURCES	Largest Solar	over 3.6 GWh of	
	SCONCES	panel farm in	electricity to power	
		Wallonia by a	lime production	
		, mining		
		company		
		Lime: Carmeuse		
CARBON	KILN	LEILAC1: Low	Calix's Direct	2016-2021
	TECHNOLOGY	Emissions	Separator Reactor	
SEPARATION	DEVELOPMENT	Intensity Lime and Cement	technology is an in-	
			situ CO ₂ capture technique that	
		Lime: Lhoist &	requires no	
		Tarmac	additional	
			chemicals or	
			equipment	
	KILN	LEILAC2: Low	X4 scale-up of	2020-2025
	TECHNOLOGY	Emissions	LEILAC1 and	
	SCALE UP	Intensity Lime	upgrade into dual	
		and Cement	mode	
			electricity/natural	
		Lime: Lhoist	gas potentially	
			balancing services	
			to the grid	

		750041 7		2024 2024
	KILN	ZERCAL: Zero-	New oxy-fuel flash	2021-2024
	TECHNOLOGY	Carbon Lime	calcination process	
	DEVELOPMENT	pilot plant	able to capture all	
			CO ₂ from lime	
		Lime: Singleton	production (lime	
		Birch	decomposition and	
			fuel combustion)	
	KILN	Butterfly	A new type of kiln	2023 -
	TECHNOLOGY	Project	designed to	
	DEVELOPMENT		effectively capture	
		Lime: Carmeuse	and concentrate	
			CO₂ released	
			during lime	
			production	
	KILN	EVEREST	Improved	2023-
	TECHNOLOGY	project	calcination and	
	DEVELOPMENT		carbon capture for	
		Lime: Lhoist	the largest lime	
			plant in Europe	
CO2 VALUE	CARBON USE	COLUMBUS:	Transforming CO ₂	2022-2025
CHAIN		Power to	generated during	
		Methane	the lime	
		Lime: Carmeuse	production process	
		Line. carnease	and hydrogen into	
			e-methane, a	
			renewable gas that	
			can be injected	
			into the gas	
			network or used to	
			power vehicles and	
			•	
			industry. Pure CO ₂	
			is required.	2010 2022
	CARBON USE	LOWCO ₂	Incorporating CO ₂	2019-2022
			to alkaline residues	
		Lime: Calcinor	(slags of energy	
			plants, slags of	
			steel mills, residues	
			of RCDs	
			construction and	
			demolition and to	
			produce	
			methane/methanol	
	CARBON USE	NKL: Neutral	innovative e-	2022-2026
		Kero Lime	Kerosene process	
			using CO ₂ from a	
		Lime: Lhoist	lime kiln and	
			hydrogen	

		produced from	
		green electricity via	
		the Fischer Tropsch	
		process	
CARBON	CSM: Carbon	A rock composed	2011-2016
STORAGE	Storage by	mainly of	
	Mineralization	magnesium silicate	
		mineral serpentine	
	Lime: Nordkalk	reacts with the CO ₂	
		to form a stable	
		compound, thus	
		fixing the CO ₂	
		permanently.	
		Direct	
		mineralisation of	
		flue gas instead of	
		separated and	
		compressed CO ₂ .	

Supplementary Information 2 (SP2). Providers of Energy Source for Electricity Production Germany 2020 and 2050. Based on [11].

	Flow	Amoun t (kWh)	Description	Provider
2020	electricity, high voltage	9	Biofuels	heat and power co-generation, biogas, gas engine electricity, high voltage APOS, S - DE
	electricity, high voltage	4	Wind Offshore	electricity production, wind, 1-3MW turbine, offshore electricity, high voltage APOS, S - DE
	electricity, high voltage	4	Hydro	electricity production, hydro, pumped storage electricity, high voltage APOS, S - DE
	electricity, high voltage	18	Wind Onshore	electricity production, wind, 1-3MW turbine, onshore electricity, high voltage APOS, S - DE
	electricity, high voltage	25	Coal	electricity production, hard coal electricity, high voltage APOS, S - DE
	electricity, high voltage	17	Natural gas	electricity production, natural gas, conventional power plant electricity, high voltage APOS, S - DE
	electricity, high voltage	11	Nuclear	electricity production, nuclear, pressure water reactor electricity, high voltage APOS, S - DE
	electricity, high voltage	1	Oil	electricity production, oil electricity, high voltage APOS, S - DE
	electricity, high voltage	9	Solar	electricity production, solar thermal parabolic trough, 50 MW electricity, high voltage APOS, S - RoW
	electricity, medium voltage	2	Waste	electricity, from municipal waste incineration to generic market for electricity, medium voltage electricity, medium voltage APOS, S - DE
2050	electricity, high voltage	3	Biofuels	heat and power co-generation, biogas, gas engine electricity, high voltage APOS, S - DE
	electricity, high voltage	7	Geothermal	electricity production, deep geothermal electricity, high voltage APOS, S - DE
	electricity, high voltage	26	Wind Offshore	electricity production, wind, 1-3MW turbine, offshore electricity, high voltage APOS, S - DE
	electricity, high voltage	34	Solar	electricity production, solar tower power plant, 20 MW electricity, high voltage APOS, S - RoW
	electricity, high voltage	4	Hydro	electricity production, hydro, pumped storage electricity, high voltage APOS, S - DE
	electricity, high voltage	26	Wind Onshore	electricity production, wind, 1-3MW turbine, onshore electricity, high voltage APOS, S - DE

Providers of Energy Source for Fuel Production Germany 2020 and 2050. Based on [11].

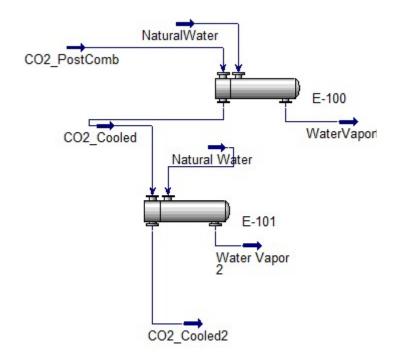
	Flow	Amount (MJ)	Description	Provider
2020	heat, district or industrial, other	2	Biomass	heat production, wood chips from industry, at

	than natural gas			furnace 1000kW heat, district or industrial, other than natural gas APOS, S - DE
	heat, district or industrial, other than natural gas	5	Oil	heat production, heavy fuel oil, at industrial furnace 1MW heat, district or industrial, other than natural gas APOS, S - Europe without Switzerland
	heat, district or industrial, other than natural gas	8	Waste	heat, from municipal waste incineration to generic market for heat district or industrial, other than natural gas heat, district or industrial, other than natural gas APOS, S - DE
	Heat, district or industrial, natural gas {Europe without Switzerland} heat production, natural gas, at industrial furnace >100kW Cut- off	34	Natural gas	heat production, natural gas, at industrial furnace >100kW - Europe without Switzerland
	Heat, district or industrial, other than natural gas {Europe without Switzerland} heat production, at hard coal industri al furnace 1-10MW Cut-off	51	Fossil Solid Fuels	heat production, at hard coal industrial furnace 1-10MW - Europe without Switzerland
2050	Heat, district or industrial, natural gas {Europe without Switzerland} heat production, natural gas, at industrial furnace >100kW Cut- off, S - Copied from Ecoinvent	60	Natural gas	heat production, natural gas, at industrial furnace >100kW - Europe without Switzerland
	heat, district or industrial, other than natural gas	32	Biomass	heat production, wood chips from industry, at furnace 1000kW heat, district or industrial, other than natural gas APOS, S - DE
	heat, district or industrial, other than natural gas	8	Waste	heat, from municipal waste incineration to generic market for heat district or industrial, other than natural gas heat, district or industrial, other than natural gas APOS, S - DE

Supplementary Information 3 (SP3).

Life-cycle inventory for the production of the lime-based plaster

The LCI for the production of the lime-based plaster is shown, based on a previous study carried out by the authors [8]. The following additives are incorporated in the mix (referred


to the binder in mass proportions): 2.5% Dispersion Agent, 0.20% Water Retention Agent, 0.02% Air Entrainer, 0.3% Hydrophobic Agent. The average transportation distance per additive is 250 km.

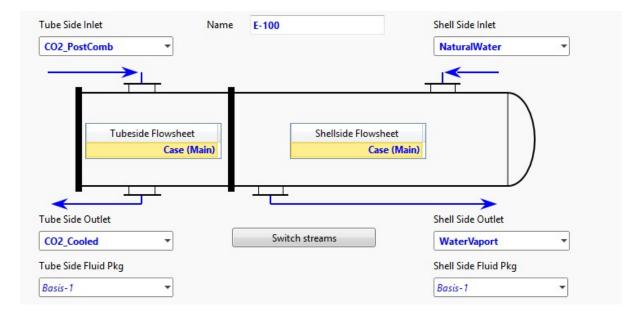

OPERATION	PROCESS MODELLED	PROCESSE	D AMOUNT	INVENTOR	Y AMOUNT	SOURCES & NOTES
	WIODELLED	AMOUNT	UNIT	AMOUNT	UNIT]
			Plaster	Manufacturin	g	
Input	Fine aggregate	0.675	t	0.675	t	Laveglia et al, 2023 [5]
	Lightweight aggregate	0.07	t	0.07	t	Modelled by Ecoinvent (pumice quarry operation, GLO)
	Transport	14	t*km	200	km	Modelled by Ecoinvent (transport, lorry 16-32 metric ton, EURO6 RoW)
	Endless screw conveyor	0.0003	kWh	0.004	kWh/t	Electricity mix (SUBLime designed) [10]
	Artificial lightweight aggregate	0.005	t	0.005	t	Modelled by Ecoinvent (expanded perlite production, GLO)
	Transport	1	t*km	200	km	Modelled by Ecoinvent (transport, lorry 16-32 metric ton, EURO6 RoW)
	Endless screw conveyor	0.00002	kWh	0.004	kWh/t	Electricity mix (SUBLime designed) [10]
	Hydrated lime (HL)	0.25	t	0.25	t	Laveglia et al, 2022 [10]
	Transport	25	t*km	100	km	Modelled by Ecoinvent (transport, lorry 16-32 metric ton, EURO6 RoW)
	Endless screw conveyor	0.001	kWh	0.004	kWh/t	Electricity mix (SUBLime designed) [10]
	Dry mixer	4	kWh	4	kWh/t	Electricity mix (SUBLime designed) [10]
Output	Hydrated Lime Plaster (HLP)	1.00	t	1.00	t	Output of the Plaster Manufacturing

Table	 Life Cycle Inv 	entory for the proc	luction of a lime-b	ased plaster (based on [8])
OPERATION	PROCESS	PROCESSED AMOUNT	INVENTORY AMOUNT	SOURCES & NOTES

Supplementary Information 4 (SP4).

Design parameters of the carbon capture system (Aspen Hysys Simulation).

Number of Shell Passes	1
Number of Shells in Series	1
Number of Shells in Parallel	1
Tube Passes per Shell	2
Exchanger Orientation	Horizontal
First Tube Pass Flow Direction	Counter
Elevation (Base)	0,0000

Shell HT Coeff [kJ/h-m2-C]	<empty></empty>
Tube HT Coeff [kJ/h-m2-C]	<empty></empty>
Overall U [kJ/h-m2-C]	24,69
Overall UA [kJ/C-h]	1564
Shell DP [kPa]	2,500e-002
Tube DP [kPa]	3,499e-002
Heat Trans. Area per Shell [m2]	63,33
Tube Volume per Shell [m3]	0,1930
Shell Volume per Shell [m3]	2,241

Duty	6,163e+005 kJ/h
Heat Leak	0,000e-01 kJ/h
Heat Loss	0,000e-01 kJ/h
UA	1,56e+03 kJ/C-h
Min. Approach	330,000 C
LMTD	20410
	594,1 C
tailed Performance	0.0000 kl/C-b
etailed Performance	0,0000 kJ/C-h 350,0000 C
tailed Performance	0,0000 kJ/C-h
etailed Performance UA Curvature Error Hot Pinch Temp	0,0000 kJ/C-h 350,0000 C

The electricity consumption of the heat exchanger is based on the pumping power required for the shell side. The pump is designed considering the pumping of natural water, at 20°C for 200 kg/h (3.3 L/m). <u>https://www.kawamoto-global.com/web/data/ecatalog_u_pdf/2.pdf</u>

										GE-C/SI/502 E	
Suction Discharge bore bore	Discharge bore	Ref.	Model	Motor kW	Standard specifications				Maximum		
					Capacity m ³ /min	Total head m	Capacity m ³ /min	Total head m	back pressure MPa	Vibration isolator application table	
	mm										
40	32	1	GEI405CE0.75	0.75	0.05	19.8	0.2	14.5	0.77	PBKV-46-404-01	PX-60
		2	GEJ405CE1.5	1.5	0.05	31	0.2	24	0.62	PBKV-46-404-02	PX-60
		3	GEJ405CE2.2	2.2	0.05	40	0.2	33.5	0.58	PBKV-46-404-02	PX-60
50	40	4	GEH505CE0.75	0.75	0.1	15.8	0.32	10.5	0.81	PBKV-46-404-01	PX-60
		5	GEI505CE1.5	1.5	0.1	22.5	0.32	17	0.75	PBKV-46-404-01	PX-60
		6	GEJ505CE2.2	2.2	0.1	34.5	0.32	24	0.63	PBKV-46-404-02	PX-60
		7	GEJ505CE3.7	3.7	0.1	45.5	0.32	36.5	0.53	QRE-01A	PX-60
		8	GEK505CE5.5	5.5	0.1	58	0.32	51	0.39	QRE-01A	PX-60
	50	9	GEH655CE1.5	1.5	0.2	15.8	0.63	10.5	0.81	PBKV-46-404-01	PX-60
65		10	GEI655CE2.2	2.2	0.2	22.8	0.63	15.2	0.75	PBKV-46-404-02	PX-60
		11	GEJ655CE3.7	3.7	0.2	32.5	0.63	21	0.65	QRE-01A	PX-60
		12	GEK655CE5.5	5.5	0.2	45	0.63	34	0.52	QRE-01A	PX-85
		13	GEK655CE7.5	7.5	0.2	54.5	0.63	43.5	0.42	QRE-01A	PX-85
80	65	14	GEI805CE3.7	3.7	0.4	23	1.25	12	0.74	QRE-01A	PX-60
		15	GEJ805CE5.5	5.5	0.4	30.5	1.25	20	0.66	QRE-01A	PX-85
		16	GEJ805CE7.5	7.5	0.4	38.5	1.25	27.5	0.58	QRE-01A	PX-85

Specification table

Supplementary Information 5 (SP5). Life-cycle cost inventory (based on [8])

Group		Item	Unit of measure	Unit costs
Purchase of Materials	Binders	Hydrated Lime	€/kg	0.11
	Aggregates	Sand	€/kg	0.01
		Pumice	€/kg	0.06
		Polystyrene	€/kg	1.29
	Additives	Carboxymethyl celullose	€/kg	0.97
		Alkylbenzene sulfonate	€/kg	0.80
		Polycarboxyllate	€/kg	0.65
		Ethylene vinyl acetate	€/kg	1.12
Others		Carbon tax	€/kg	0.09
Transportati	on	Truck transportation	€/t.km	0.06
Electricity consur	nption	Electricity	€/kWh	0.11
End of Life		Sanitary landfilling	€/kg	0.02