Semiconductor biohybrids for enhanced bifunctional wastewater sulfur and heavy metal removal

Yanju Zhang ^{a,b}, Furui Fang ^a, Xiaoxiao Qian ^a, Liangchen Li ^a, Zongli Huo^c, Jingjing Zhang ^c, Dandan Dong ^d, Chaofeng Huang^{*d}, JiaYuan Li^e, Yonghong Hu ^{a,b} *, Li Mi ^{a,b} *

- a. College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, No. 30, South Puzhu Road, Nanjing 211816, China.
- b. State Key Laboratory of Materials-Oriented Chemical Engineering, Nanjing Tech University, No. 30, South Puzhu Road, Nanjing 211816, China.
- c. Jiangsu Provincial Center for Disease Control and Prevention, No.172 Jiangsu Road, Nanjing, 210009, China
- d. College of Chemical Engineering Shihezi University, Shihezi 832000, China
- e. Nanjing Polytechnic Institute, No.188, Xinle Road, Jiangbei New Area, Nanjing, 210009, China

Figure S1 Photograph of the (A) *H. neapolitanus*, (B) *H. neapolitanus* with only Cd^{2+} , (C)*H. neapolitanus* with only cysteine, (D) only Cd^{2+} and cysteine, and (E)CdS-*H. neapolitanus* biohybrid with Cd^{2+} and cysteine.

Figure S2 The SEM images of *H. neapolitanus*.

Figure S3 The SEM images of *H. neapolitanus* and CdS-*H. neapolitanus* biohybrid system; (A) *H. neapolitanus* (B) the overall view of the CdS-*H. neapolitanus* biohybrid system (C) the partial view of the CdS-*H. neapolitanus* biohybrid system.(D-G) SEM images of CdS-*H. neapolitanus* biohybrid system(D) and EDS mappings shows the distribution of (E) carbon (C), (F) cadmium (Cd) and (G) sulfur (S) in CdS-*H. neapolitanus* biohybrid system.

Figure S4 EDS spectrum analysis of CdS-H. neapolitanus biohybrid.

Figure S5 Calculation of direct bandgap of CdS NPs.

Figure S6 HRTEM images of CdS NPs.

Figure S7 Optical fluorescence microscopy images of the *H. neapolitanus* (A-B) and the CdS-*H. neapolitanus* biohybrid system (C-D), where the scale bar represents $10\mu m$. Images (A) and (C) are in brightfields, while images (B) and (D) depicts the bright red channel, showing the fluorescence by the CdS-*H. neapolitanus* biohybrid system.

Figure S8 The ecotoxicity for Chemical and Biological Cds NPs.

Figure S9 The cell density of *H. neapolitanus* with different initial Cd^{2+} concentrations after 120 h cultivation (without protection from the cysteine).

Figure S10 The sulphur removal efficiency of *H. neapolitanus* (light/dark) and CdS-*H. neapolitanus* biohybrid (light/dark).

Figure S11 (A)The desulfurization efficiency in industrial wastewater of the *H. neapolitanus* (light/dark) and CdS-*H. neapolitanus* biohybrid (light/dark) (B)The Cd²⁺ density in industrial wastewater of the CdS-*H. neapolitanus* biohybrid (light/dark)

Figure S12 Dry weight of *H. neapolitanus* (light/dark) and CdS-*H. neapolitanus* biohybrid (light/dark) in the solar-driven desulfurization process.

Figure S13 Ion chromatogram of CdS NPs to oxidize $Na_2S_2O_3$ to form SO_4^{2-} at different time.

Tab	le	S 1	Med	liums	for	cell	cul	ture
-----	----	------------	-----	-------	-----	------	-----	------

Medium I	1000mL
DDW	1000mL
$Na_2S_2O_3$ ·5H ₂ O	5g
KNO3	2g
KH ₂ PO ₄	2g
NaHCO ₃	1g
NHCl ₄	0.5g

$MgCl_2$	0.5g
FeSO ₄ ·7H ₂ O	0.02g
Medium II	1000mL
DDW	1000mL
KNO ₃	2g
KH ₂ PO ₄	2g
NaHCO ₃	1g
NHCl ₄	0.5g
$MgCl_2$	0.5g
FeSO ₄ ·7H ₂ O	0.02g