Supporting Information

Unlocking the Secrets of High-Water Barrier Stereocomplex Polylactide Blend Extrusion Films

James F. MACNAMARA Jr.^a, Maria RUBINO^a, Matthew DAUM^a, Ajay KATHURIA^b, Rafael AURAS^{a,*}

^a School of Packaging, Michigan State University, East Lansing, MI 48824-1223, USA

^b Industrial Technology and Packaging, California Polytechnic State University, San Luis Obispo, CA, 93407-2311, USA

*Corresponding author: <u>aurasraf@msu.edu</u>

Table of contents

Figure S1. a) TGA of PLLA (L130) and PDLA (D210) resin; b) DSC of PLLA (L130) and PDLA (D120) resin

Figure S2. UV transmission rate versus wavelength for the various films at a wavelength of 600 nm.

Figure S3. Tensile Strength of PLLA, blends, and PDLA in CD.

Figure S4. a) DSC of annealed PLLA-PDLA (85/15)-A-0,5,15,30 minutes; b) WAXD of annealed PLLA-PDLA 85/15)-A-0,5,15,30 minutes; c) DSC of annealed PLLA-PDLA (30/70)-A-0,5,15,30 minutes; d) WAXD of annealed PLLA-PDLA (30/70)-A-0,5,15,30 minutes. Note: In the WAXD figures, the dashed black lines represent α -crystals. The dashed blue lines represent sc-crystals.

 Table S1. Cast Film extrusion parameters used for processing.

Table S2. MFR of PLLA and PDLA resins.

Table S3. Physical properties of PLLA and PDLA resins used in the study.

Table S4. Tensile Stress and Strain of PLLA, PDLA and blends, MD, and CD, non-annealed. Values followed by a different letter are significantly different at $P \le 0.05$ (Tukey test).

S1. Processing conditions

Table S1 shows the processing conditions in which the film was extruded.

Processing temperatures	Temperature (°C)
Zone 1	210
Zone 2	220
Zone 3	230
Transfer tube	230
Adapter	230
Feedblock	220
Die	215
Chill Roll	22
Extrusion Settings	Speed (RPM)
Screw	25
Chill roll speed	10 to 20

 Table S1. Cast Film extrusion parameters used for processing.

S2. Resin Characterization

Table S2 shows the melt flow rate (MFR) of all four resins used in the study.

	Weight (g/30 sec)	MFR (g/10 min)		Weight (g/30 sec)	MFR (g/10 min)
PLLA - L130	0.653	13.06	PDLA - D120	0.619	12.38
	0.629	12.59		0.512	10.24
	0.609	12.19		0.483	9.66
	0.754	15.09		0.736	14.72
	0.584	11.69		0.661	13.22
	0.753	15.06		0.570	11.39
	0.610	12.21		0.507	10.13
	0.595	11.89		0.626	12.52
	0.582	11.64		0.494	9.89
	0.565	11.30		0.738	14.76
	0.554	11.08		0.751	15.01
	0.507	10.14		0.604	12.09
_	0.487	9.74		0.598	11.96
Average	0.606	12.13	Average	0.608	12.15
St. Dev.	0.064	1.53	St. Dev.	0.090	1.81

Table S2. MFR of PLLA and PDLA resins.

*190° C and 2.16 kg weight

*190° C and 2.16 kg weight

	Weight (g/30 sec)	MFR (g/10 min)		Weight (g/30 sec)	MFR (g/10 min)		
PLLA - L175	0.170	3.40	PDLA - D070	0.485	9.69		
_	0.182	3.64		0.472	9.43		
_	0.150	3.00		0.495	9.89		
_	0.181	3.62		0.413	8.26		
_	0.191	3.82		0.520	10.40		
_	0.157	3.13		0.576	11.52		
_	0.191	3.81		0.546	10.92		
	0.181	3.61		0.483	9.65		
Average	0.175	3.50	Average	0.499	9.97		
St. Dev.	0.014	0.28	St. Dev.	0.046	0.93		
*1009 C and 2 16 ha maint			*1000 C and 2 1 C ha muist				

*190° C and 2.16 kg weight

*190° C and 2.16 kg weight

Table S3 shows the study's thermal and physical properties of all four resins.

Thermal Properties	PL (L)	LLA 175)		n	PDLA	(D070))	n
<i>T_{d,1%}</i> , °C	318	±	5	3	314	±	1	3
$T_g, ^{\circ}\mathrm{C}$	78	±	1	3	75	±	0	3
$T_m, ^{\circ}\mathrm{C}$	177	±	1	3	177	±	1	3
$X_c, \%$	37	±	8	3	56	±	19	3
Melt Flow Rate, g/10 min	3.5	±	0.3	8	10.0	±	0.9	8
Physical Properties								
Density, g/cm ³	1.25	±	0.0	9	1.24	±	0.0	9
M_w , kDa	157	±	6	6	38	<u>+</u>	3	6
M_n , kDa	87	±	7	6	22	±	2	6
Ð	1.7	±	0	6	1.8	±	0.1	6
Note: n indicates the number of samplesThermal PropertiesPLLA (L130)nPDLA (D120)n								
Thermal Properties	PL (L	LLA 130)		n	PDLA	(D120))	n
Thermal Properties <i>T_{d,1%}</i> , °C	PI (L) 303	LLA 130) ±	5	n 3	PDLA 319	(D120 ±)) 5	n 3
Thermal Properties $T_{d,1\%}$, °C T_g , °C	PI (L) 303 74	LLA 130) ± ±	5	n 3 3	PDLA - 319 72	(D120 <u>±</u> ±)) 5 7	n 3 3
Thermal Properties $T_{d,1\%}$, °C T_g , °C T_m , °C	PL (L 303 74 176	LLA 130) ± ± ±	5 1 1	n 3 3 3	PDLA 319 72 179	(D120 <u>+</u> <u>+</u> <u>+</u> ±)) 5 7 1	n 3 3 3
Thermal Properties $T_{d,1\%}$, °C T_g , °C T_m , °C X_c , %	PI (L) 303 74 176 30	LLA 130) ± ± ±	5 1 1 1	n 3 3 3 3	PDLA 319 72 179 30	(D120 <u>±</u> <u>±</u> <u>±</u> <u>±</u>)) 5 7 1 5	n 3 3 3 3
Thermal Properties $T_{d,1\%}$, °C T_g , °C T_m , °C X_c , %Melt Flow Rate, g/10 min	PL (L 303 74 176 30 12.1	LLA 130) ± ± ± ±	5 1 1 1 1.5	n 3 3 3 3 13	PDLA 319 72 179 30 12.1	(D120 ± ± ± ± ±)) 5 7 1 5 1.8	n 3 3 3 3 13
Thermal Properties $T_{d.1\%}$, °C T_g , °C T_m , °C X_c , %Melt Flow Rate, g/10 minPhysical Properties	PI (L 303 74 176 30 12.1	LLA 130) ± ± ± ±	5 1 1 1.5	n 3 3 3 13	PDLA 319 72 179 30 12.1	(D120 <u>±</u> <u>±</u> <u>±</u> <u>±</u> <u>±</u> <u>±</u>)) 5 7 1 5 1.8	n 3 3 3 13
Thermal Properties $T_{d,1\%}$, °C T_g , °C T_m , °C X_c , %Melt Flow Rate, g/10 minPhysical PropertiesDensity, g/cm³	PI (L) 303 74 176 30 12.1 1.25	LLA 130) ± ± ± ± ±	5 1 1 1.5 0	n 3 3 3 13 19	PDLA 319 72 179 30 12.1 1.25	(D120) <u>±</u> <u>±</u> <u>±</u> <u>±</u> <u>±</u> <u>±</u>)) 5 7 1 5 1.8 0	n 3 3 3 13 12
Thermal Properties $T_{d,1\%}$, °C T_g , °C T_m , °C X_c , %Melt Flow Rate, g/10 minPhysical PropertiesDensity, g/cm³ M_w , kDa	PI (L) 303 74 176 30 12.1 1.25 120	LLA 130) ± ± ± ±	5 1 1 1.5 0 0	n 3 3 3 13 19 6	PDLA 319 72 179 30 12.1 1.25 101	(D120 <u>±</u> <u>±</u> <u>±</u> <u>±</u> <u>±</u> <u>±</u> <u>±</u>	0) 5 7 1 5 1.8 0 0 0	n 3 3 3 13 12 6
Thermal Properties $T_{d,1\%}$, °C T_g , °C T_m , °C X_c , %Melt Flow Rate, g/10 minPhysical PropertiesDensity, g/cm³ M_w , kDa M_n , kDa	PL (L 303 74 176 30 12.1 1.25 120 70	LLA 130) ± ± ± ± ±	5 1 1 1.5 0 0 1	n 3 3 3 13 19 6 6	PDLA 319 72 179 30 12.1 1.25 101 59	(D120) ± ± ± ± ± ± ± ±)) 5 7 1 5 1.8 0 0 0 1	n 3 3 3 13 12 6 6
Thermal Properties $T_{d,1\%}$, °C T_g , °C T_m , °C X_c , %Melt Flow Rate, g/10 minPhysical PropertiesDensity, g/cm³ M_w , kDa M_n , kDa D	PI (L. 303 74 176 30 12.1 1.25 120 70 1.7	LLA 130) ± ± ± ± ±	5 1 1 1.5 0 0 1 0.0	n 3 3 3 3 13 19 6 6 6	PDLA 319 72 179 30 12.1 1.25 101 59 1.7	(D120 ± ± ± ± ± ± ± ± ±)) 5 7 1 5 1.8 0 0 0 1 0.0	n 3 3 3 13 12 6 6 6 6

 Table S3. Physical properties of PLLA and PDLA resins used in the study.

Figure S1 is the thermograms of the PLLA(L130) and PDLA(D120) resins used in the study.

Figure S1. a) TGA of PLLA (L130) and PDLA (D210) resin; b) DSC of PLLA (L130) and PDLA (D120) resin

S3. Films Characterization

Figure S2. UV transmission rate versus wavelength for the various films at a wavelength of 600 nm.

Figure S3 shows the Tensile Strength of PLLA, blends, and PDLA in CD.

Figure S3. Tensile Strength of PLLA, blends, and PDLA in CD.

Table S4 summarizes all the films' non-annealed tensile stress and strain.

Table S4. Tensile Stress and Strain of PLLA, PDLA and blends, MD, and CD, non-annealed. Values followed by a different letter are significantly different at $P \le 0.05$ (Tukey test).

	Tensile stress a	t Maximum load	Tensile strain at tensile strength		
	MD	CD	MD	CD	
Material	MPa	MPa	%	%	
PLLA - L130-A160 - 0 minutes	$36.18 \pm 4.36^{\text{b}}$	$19.82 \pm 1.96^{\text{e}}$	$2.33\pm0.11^{\rm f}$	$1.45\pm0.14^{\text{g},\text{h}}$	
PLLA/PDLA(85/15)-A160 - 0 minutes	43.97 ± 4.94^{a}	$28.77 \pm 1.15^{\text{c,d}}$	$2.42\pm0.22^{\rm f}$	$1.33\pm0.10^{\rm g}$	
PLLA/PDLA(70/30)-A160 - 0 minutes	35.49 ± 2.66^{b}	$30.19\pm3.93^{\rm c}$	$2.34\pm0.14^{\rm f}$	$1.82\pm0.16^{\rm i}$	
PLLA/PDLA(50/50)-A160 - 0 minutes	$33.43 \pm 1.39^{\text{b}}$	$20.61 \pm 1.70^{\mathrm{e}}$	$2.25\pm0.07^{\rm f}$	$1.56\pm0.10^{\rm h}$	
PLLA/PDLA(30/70)-A160 - 0 minutes	$33.19\pm2.74^{\text{b}}$	$24.04 \pm 1.47^{d,e}$	$2.08\pm0.35^{\rm f}$	$1.33\pm0.12^{\text{g}}$	
PDLA - D120-A160 - 0 minutes	41.77 ± 3.05^a	$32.65 \pm 6.00^{\circ}$	$2.48\pm0.24^{\rm f}$	$1.44\pm0.23^{\text{g,h}}$	

Figure S4 shows the DSC and WAXD of the other blends, (85/15) and (30/70) PLLA/PDLA.

Figure S4. a) DSC of annealed PLLA-PDLA (85/15)-A-0,5,15,30 minutes; b) WAXD of annealed PLLA-PDLA 85/15)-A-0,5,15,30 minutes; c) DSC of annealed PLLA-PDLA (30/70)-A-0,5,15,30 minutes; d) WAXD of annealed PLLA-PDLA (30/70)-A-0,5,15,30 minutes. Note: In the WAXD figures, the dashed black lines represent α -crystals. The dashed blue lines represent sc-crystals.