Supplementary information Full use of lignocellulosic biomass in efficient synthesis of L-tyrosine and its analogues by engineering microbial consortia

Mingtao Zhao, Xiaofeng Wu, Yankai Tao, Yi Xiao*

M. Zhao, X. Wu, Y. Tao, Y. Xiao

State Key Laboratory of Microbial Metabolism, School of Life Sciences and Biotechnology, Shanghai Jiao Tong

University, 800 Dongchuan RD. Minhang District, Shanghai 200240, China.

Emails:

M. Zhao: taoaige@sjtu.edu.cn

X. Wu: wxf991122@sjtu.edu.cn

Y. Tao: taoyankai@sjtu.edu.cn

*Corresponding author. Y. Xiao: <u>vi xiao@sjtu.edu.cn</u>

List of Figures

Fig. S1 Biocatalytic cascades towards the synthesis of L-tyrosine derivatives from lignin-derived phenolics and pyruvate produced from glucose-xylose mixtures.

Fig. S2 Optimization of pyruvate synthesis within different strains containing different sgRNAs.

Fig. S3 Pyruvate synthesis using xylose-selective strains.

Fig. S4 Optimization of pyruvate synthesis using the SPYR13-SPYR15 consortium with both of different inoculation ratios of SPYR13 to SPYR15 and different concentrations of glucose and xylose.

Fig. S5 The time course for the accumulation of acetic acid during the process of producing pyruvate with the SPYR13–SPYR15 consortium.

Fig. S6 Optimization of pyruvate synthesis using the SGXP01-SGXP02 consortium with different inoculation ratios and 20 g L⁻¹ glucose-xylose mixtures (13.5 g L⁻¹ glucose and 6.5 g L⁻¹ xylose).

Fig. S7 The time course for the synthesis of 1a from 5.5 g L^{-1} 2a with the GXP system.

Fig. S8 Comparison of different sources of decarboxylases to catalyze the decarboxylation of lignin-derived hydroxybenzoic acids to phenol and its analogues.

Fig. S9 Optimization of pyruvate synthesis using the SGXP05-SGXP06 consortium with different inoculation ratios and 20 g L⁻¹ glucose-xylose mixtures (13.5 g L⁻¹ glucose and 6.5 g L⁻¹ xylose). **Fig. S10** Optimization of pyruvate synthesis using the SGXP07-SGXP02 consortium with different inoculation ratios and 20 g L⁻¹ glucose-xylose mixtures (13.5 g L⁻¹ glucose and 6.5 g L⁻¹ xylose). **Fig. S11** Optimization of pyruvate synthesis using the SGXP08-SGXP02 consortium with different inoculation ratios and 20 g L⁻¹ glucose-xylose mixtures (13.5 g L⁻¹ glucose and 6.5 g L⁻¹ xylose). **Fig. S12** Optimization of pyruvate synthesis using the SGXP09-SGXP06 consortium with different inoculation ratios and 20 g L⁻¹ glucose-xylose mixtures (13.5 g L⁻¹ glucose and 6.5 g L⁻¹ xylose). **Fig. S12** Optimization of pyruvate synthesis using the SGXP09-SGXP06 consortium with different inoculation ratios and 20 g L⁻¹ glucose-xylose mixtures (13.5 g L⁻¹ glucose and 6.5 g L⁻¹ xylose). **Fig. S12** Optimization of pyruvate synthesis using the SGXP09-SGXP06 consortium with different inoculation ratios and 20 g L⁻¹ glucose-xylose mixtures (13.5 g L⁻¹ glucose and 6.5 g L⁻¹ xylose). **Fig. S13** The effects of the different phenolics on the growth of SPYR13-SPYR15 consortium. **Fig. S14** The entire enzymatic-chemical process to obtain the glucose-xylose mixtures and *p*-coumaric acid (**5a**) from sorghum pith.

List of Tables

Table S1. Plasmids used in this study
Table S2. Strains used in this study
Table S3. N20 sequences (targeting sites) used for targeting *aceE*Table S4. Conversions (%) for the formation of tyrosine derivatives employing wild-type TPL from *Citrobacter freundii*.

Table S5. Chemicals used in this study

Table S6. DNA sequences used in this study

Fig. S1 Biocatalytic cascades towards the synthesis of L-tyrosine derivatives from lignin-derived phenolics and pyruvate produced from glucose-xylose mixtures.

Fig. S2 Optimization of pyruvate synthesis within different strains containing different sgRNAs. A) Glucose consumption by different strains. B) Pyruvate synthesis by different strains. C) Cell growth of different strains. The colors used here are unrelated to those used elsewhere. The fermentations were started using 10 g L⁻¹ glucose. When cell cultures reached an OD₆₀₀ of 0.6, 0.35 mg L⁻¹ anhydrotetracycline (aTc) was added for dCas9 expression except for the control experiments. The fermentation were finished after 14 h.

Fig. S3 Pyruvate synthesis using xylose-selective strains. A) Pyruvate synthesis using strain SPYR15 carrying a CRISPRi system. When cell cultures reached an OD_{600} of 0.6, 0.35 mg L⁻¹ aTc was added for dCas9 expression. B) Control experiment using strain MG74A3.

Fig. S4 Optimization of pyruvate synthesis using the SPYR13-SPYR15 consortium with both of different inoculation ratios of SPYR13 to SPYR15 and different concentrations of glucose and xylose. A) Construction of SPYR13-SPYR15 consortium for pyruvate synthesis. The fermentations were started using 10 g L⁻¹ glucose and 10 g L⁻¹ xylose with an inoculation ratio of 1:1 (SPYR13:SPYR15) (B), 1:2 (SPYR13:SPYR15) (C) and 1:4 (SPYR13:SPYR15) (D). The fermentations were started using 6.5 g L⁻¹ glucose and 13.5 g L⁻¹ xylose with an inoculation ratio of 1:1 (SPYR13:SPYR15) (F) and 1:4 (SPYR13:SPYR15) (G). The fermentations were started using 13.5 g L⁻¹ glucose and 6.5 g L⁻¹ xylose with an inoculation ratio of 1:1 (SPYR13:SPYR15) (I) and 1:4 (SPYR13:SPYR15) (J). When cell cultures reached an OD₆₀₀ of 1.2, 0.35 mg L⁻¹ aTc was added for dCas9 expression.

Fig. S5 The time course for the accumulation of acetic acid during the process of producing pyruvate with the SPYR13–SPYR15 consortium.

Fig. S6 Optimization of pyruvate synthesis using the SGXP01-SGXP02 consortium with different inoculation ratios and 20 g L⁻¹ glucose-xylose mixtures (13.5 g L⁻¹ glucose and 6.5 g L⁻¹ xylose). A) Construction of SGXP01-SGXP02 consortium for pyruvate synthesis. The fermentations were started using an inoculation ratio of 1:1 (SGXP01:SGXP02) (B), 1:2 (SGXP01:SGXP02) (C) and 1:4 (SGXP01:SGXP02) (D). When cell cultures reached an OD₆₀₀ of 1.2, 0.35 mg L⁻¹ aTc was added for dCas9 expression.

Fig. S7 The time course for the synthesis of **1a** from 5.5 g L^{-1} **2a** with the GXP system. The fermentations were started using 13.5 g L^{-1} glucose and 6.5 g L^{-1} xylose. After 17 h of fermentation, 5.5 g L^{-1} **2a** was added with 20 g L^{-1} NH₄Cl and 0.5 mM PLP to begin the synthesis of **1a**.

Fig. S8 Comparison of different sources of decarboxylases to catalyze the decarboxylation of lignin-derived hydroxybenzoic acids to phenol and its analogues. A) Decarboxylation of *p*-hydroxybenzoic acid (3a) to produce phenol (2a). B) Decarboxylation of protocatechuic acid (3b) to produce catechol (2b). C)
Decarboxylation of vanillic acid (3c) to produce guaiacol (2c). The genes (*BsdBCD*, *KpdBCD* and *aroY*) were cloned into plasmid pA5a and then were transformed into *E. coli* MG1655 to construct three biocatalysts. The reactions were performed in 10 mL KPi buffer with an OD₆₀₀ of 10 at 37 °C and 220 rpm for 1 h.

Fig. S9 Optimization of pyruvate synthesis using the SGXP05-SGXP06 consortium with different inoculation ratios and 20 g L⁻¹ glucose-xylose mixtures (13.5 g L⁻¹ glucose and 6.5 g L⁻¹ xylose). A) Construction of SGXP05-SGXP06 consortium for pyruvate synthesis. The fermentations were started using an inoculation ratio of 1:2 (SGXP05:SGXP06) (B) and 1:4 (SGXP05:SGXP06) (C). When cell cultures reached an OD₆₀₀ of 1.2, 0.35 mg L⁻¹ aTc was added for dCas9 expression.

Fig. S10 Optimization of pyruvate synthesis using the SGXP07-SGXP02 consortium with different inoculation ratios and 20 g L⁻¹ glucose-xylose mixtures (13.5 g L⁻¹ glucose and 6.5 g L⁻¹ xylose). A) Construction of SGXP07-SGXP02 consortium for pyruvate synthesis. The fermentations were started using an inoculation ratio of 1:1 (SGXP07:SGXP02) (B), 1:2 (SGXP07:SGXP02) (C) and 1:4 (SGXP07:SGXP02) (D). When cell cultures reached an OD₆₀₀ of 1.2, 0.35 mg L⁻¹ aTc was added for dCas9 expression.

Fig. S11 Optimization of pyruvate synthesis using the SGXP08-SGXP02 consortium with different inoculation ratios and 20 g L⁻¹ glucose-xylose mixtures (13.5 g L⁻¹ glucose and 6.5 g L⁻¹ xylose). A) Construction of SGXP08-SGXP02 consortium for pyruvate synthesis. The fermentations were started using an inoculation ratio of 1:2 (SGXP08:SGXP02) (B), 1:2 (SGXP08:SGXP02) (C) and 1:4 (SGXP08:SGXP02) (D). When cell cultures reached an OD₆₀₀ of 1.2, 0.35 mg L⁻¹ aTc was added for dCas9 expression.

Fig. S12 Optimization of pyruvate synthesis using the SGXP09-SGXP06 consortium with different inoculation ratios and 20 g L⁻¹ glucose-xylose mixtures (13.5 g L⁻¹ glucose and 6.5 g L⁻¹ xylose). A) Construction of SGXP09-SGXP06 consortium for pyruvate synthesis. The fermentations were started using an inoculation ratio of 1:2 (SGXP09:SGXP06) (B), 1:2 (SGXP09:SGXP06) (C) and 1:4 (SGXP09:SGXP06) (D). When cell cultures reached an OD₆₀₀ of 1.2, 0.35 mg L⁻¹ aTc was added for dCas9 expression.

Fig. S13 The effects of the different phenolics on the growth of SPYR13-SPYR15 consortium. The fermentations were started using 13.5 g L⁻¹ glucose and 6.5 g L⁻¹ xylose with an inoculation ratio of 1:4 (SPYR13:SPYR15). When cell cultures reached an OD₆₀₀ of 1.2, 0.35 mg L⁻¹ aTc was added for dCas9 expression, and different concentrations of phenolics (2 g L⁻¹ 2a, 1.8 g L⁻¹ 3a, 2 g L⁻¹ 4a and 2 g L⁻¹ 5a) were added to test the growth of SPYR13-SPYR15 consortium.

Fig. S14 The entire enzymatic-chemical process to obtain the glucose-xylose mixtures and *p*-coumaric acid (**5a**) from sorghum pith.

Plasmids	Descriptions	Sources
pS2k	Tet promoter, pSC101 ori, Kan ^R	BglBrick ¹
pA5a	LacUV5 promoter, p15A ori, Amp ^R	BglBrick ¹
pB1c	Trc promoter, pBBR1 ori, Cm ^R	BglBrick ¹
pCas	repA101(Ts) kan Pcas-cas9 ParaB-Red lacIq	2
	Ptrc-sgRNA-pMB1	
pTargetF	P _{J23119} , pMB1 ori, Sm ^R	2
pS2k-dcas9	pS2k carrying <i>dcas9</i>	This study
pTargetF-aceE01	N20-1, P _{J23119} -sgRNA-aceE1, pMB1 ori, Sm ^R	This study
pTargetF-aceE02	N20-2, PJ23119-sgRNA-aceE2, pMB1 ori, Sm ^R	This study
pTargetF-aceE03	N20-3, P _{J23119} -sgRNA-aceE3, pMB1 ori, Sm ^R	This study
pTargetF-aceE04	N20-4, P _{J23119} -sgRNA-aceE4, pMB1 ori, Sm ^R	This study
pTargetF-aceE05	N20-5, P _{J23119} -sgRNA-aceE5, pMB1 ori, Sm ^R	This study
pTargetF-aceE06	N20-6, P _{J23119} -sgRNA-aceE6, pMB1 ori, Sm ^R	This study
pTargetF-aceE07	N20-7, P _{J23119} -sgRNA-aceE7, pMB1 ori, Sm ^R	This study
pTargetF-aceE08	N20-8, P _{J23119} -sgRNA-aceE8, pMB1 ori, Sm ^R	This study
pTargetF-aceE09	N20-9, P _{J23119} -sgRNA-aceE9, pMB1 ori, Sm ^R	This study
pTargetF-aceE10	N20-10, P _{J23119} -sgRNA-aceE10, pMB1 ori, Sm ^R	This study
pTargetF-aceE11	N20-11, PJ23119-sgRNA-aceE11, pMB1 ori, Sm ^R	This study
pTargetF-aceE12	N20-12, PJ23119-sgRNA-aceE12, pMB1 ori, Sm ^R	This study
pTargetF-aceE13	N20-13, PJ23119-sgRNA-aceE13, pMB1 ori, Sm ^R	This study
pTargetF-aceE14	N20-14, PJ23119-sgRNA-aceE14, pMB1 ori, Sm ^R	This study
pTargetT-ldhA	P _{J23119} -sgRNA-ldhA, pMB1 ori, Sm ^R , donor DNAs	This study
pTargetT-poxB	P _{J23119} -sgRNA-poxB, pMB1 ori, Sm ^R , donor DNAs	This study
pTargetT- <i>pflB</i>	P _{J23119} -sgRNA- <i>pflB</i> , pMB1 ori, Sm ^R , donor DNAs	This study
pA5a-TPL	pA5a carrying <i>tpl</i>	This study
pA5a-TPL(M379V)	pA5a carrying <i>tpl(M379V)</i>	This study
pA5a-BsdBCD	pA5a carrying <i>BsdBCD</i>	This study
pA5a-BsdBCD-Vdh	pA5a carrying BsdBCD and vdh	This study
pA5a-BsdBCD-TPL	pA5a carrying <i>BsdBCD</i> and <i>tpl</i>	This study
pA5a-BsdBCD-TPL(M379V)	pA5a carrying <i>BsdBCD</i> and <i>tpl(M379V)</i>	This study
pA5a-Fcs-Ech-Vdh	pA5a carrying <i>fcs</i> , <i>ech</i> and <i>vdh</i>	This study
pA5a-KpdBCD	pA5a carrying <i>KpdBCD</i>	This study
pA5a-AroY	pA5a carrying <i>aroY</i>	This study

Table	S2 .	Strains	used	in	this	study
						~

Strains	Descriptions	Sources
<i>E. coli</i> DH5α	F^- , $\varphi 80d$ lacZAM15, Δ (lacZYA-argF) U169, recA1, endA1,	
	$hsdR17(rk^{-}, mk^{+})$, phoA, $supE44\lambda^{-}$, thi ⁻¹ , gyrA96, relA1	
<i>E. coli</i> MG1655	K-12; $F^{-}\lambda^{-}$ rph-1	
MG40B	E. coli MG1655, ΔldhA, ΔpoxB, ΔpflB	This study
MG74A3	MG40B, $\Delta ptsG$, $\Delta manZ$, $\Delta galP$, Δglk	This study
SPYR01	MG40B carrying pS2k-dcas9 and pTargetF-aceE01	This study
SPYR02	MG40B carrying pS2k-dcas9 and pTargetF-aceE02	This study
SPYR03	MG40B carrying pS2k-dcas9 and pTargetF-aceE03	This study
SPYR04	MG40B carrying pS2k-dcas9 and pTargetF-aceE04	This study
SPYR05	MG40B carrying pS2k-dcas9 and pTargetF-aceE05	This study
SPYR06	MG40B carrying pS2k-dcas9 and pTargetF-aceE06	This study
SPYRP7	MG40B carrying pS2k-dcas9 and pTargetF-aceE07	This study
SPYR08	MG40B carrying pS2k-dcas9 and pTargetF-aceE08	This study
SPYR09	MG40B carrying pS2k-dcas9 and pTargetF-aceE09	This study
SPYR10	MG40B carrying pS2k-dcas9 and pTargetF-aceE10	This study
SPYR11	MG40B carrying pS2k-dcas9 and pTargetF-aceE11	This study
SPYR12	MG40B carrying pS2k-dcas9 and pTargetF-aceE12	This study
SPYR13	MG40B carrying pS2k-dcas9 and pTargetF-aceE13	This study
SPYR14	MG40B carrying pS2k-dcas9 and pTargetF-aceE14	This study
SPYR15	MG74A3 carrying pS2k-dcas9 and pTargetF-aceE13	This study
SGXP01	SPYR13 carrying pA5a-TPL	This study
SGXP02	SPYR15 carrying pA5a-TPL	This study
SGXP03	SPYR13 carrying pA5a-TPL(M379V)	This study
SGXP04	SPYR15 carrying pA5a-TPL(M379V)	This study
SGXP05	SPYR13 carrying pA5a-BsdBCD-TPL	This study
SGXP06	SPYR15 carrying pA5a-BsdBCD-TPL	This study
SGXP07	SPYR13 carrying pA5a-BsdBCD	This study
SGXP08	SPYR13 carrying pA5a-BsdBCD-Vdh	This study
SGXP09	SPYR13 carrying pA5a-Fcs-Ech-Vdh	This study
SGXP10	SPYR15 carrying pA5a-BsdBCD-TPL(M379V)	This study

N20	Sequences (5'-3')	PAM (NGG)
1	CGAAGCGCGTACTTTCGGTA	TGG
2	GGATGACCGATTCGATCGCC	TGG
3	CTTTCCGGCGAGAGTTCAAT	GGG
4	TCAACGTTATTAGATAGATA	AGG
5	TGCGGGCTTCAGCAAGCAGT	TGG
6	GTTGCTGATACCTGTGCCTG	CGG
7	AGCGGATAGCTGAACGAATA	CGG
8	AATGGTTGCGGAAGACTGGA	AGG
9	GGCGACCTGGTTTACTTCCA	GGG
10	CCAGACCCATAGATACGGTC	GGG
11	CCGGGCCGTCAAGACGCTGC	AGG
12	TCGATATCTGCATCAGACAC	CGG
13	TCTTCGGATCGTGACCACCA	CGG
14	GCGCCGAAGTCTTGCAGGCT	CGG

Table S3. N20 sequences (targeting sites) used for targeting aceE

Substrate	Conversion (%)
Guaiacol (2c)	n.c.
o-Cresol (2d)	n.c.
<i>m</i> -cresol (2e)	45

Table S4. Conversions (%) for the formation of tyrosine derivatives employing wild-type TPL from *Citrobacter freundii*.

Reaction conditions: 1 g L^{-1} phenol derivatives, 20 g L^{-1} NH₄Cl, 10 g L^{-1} pyruvate, and 0.5 mM PLP. n.c.=no conversion.

The biocatalyst was constructed by transforming pA5a-TPL into strain MG40B. The reactions were performed in 10 mL KPi buffer with an OD_{600} of 15 at 37 °C and 220 rpm for 6 h.

Chemicals	Sources
Catechol (2b)	Macklin
<i>o</i> -Cresol (2d)	Macklin
Vanillin (4c)	Macklin
Ferulic acid (5c)	Macklin
<i>m</i> -Cresol (2e)	Aladdin
Caffeic acid (5b)	Aladdin
Protocatechuic acid (3b)	Shanghai yuanye Bio-Technology
Vanillic acid (3c)	Shanghai yuanye Bio-Technology
Protocatechualdehyde (4b)	Shanghai yuanye Bio-Technology
L-DOPA (1b)	Adamas
<i>p</i> -Coumaric acid (5a)	Adamas
<i>p</i> -Hydroxybenzoic acid (3a)	Shanghai Dibai
<i>p</i> -Hydroxybenzaldehyde (4a)	J&K Scientific
Phenol (2a)	Shanghai Titan Scientific
Guaiacol (2c)	RHAWN
L-Tyrosine (1a)	Sangon Biotech
3-OCH ₃ -L-tyrosine (1c)	Amatek Chemical
3-CH ₃ -L-tyrosine (1d)	Asta Tech

Table S5. Chemicals used in this study

Gene name	DNA sequences
fcs	ATGAATAACGAAGCCCGCTCAGGGTCGACCGACCCTGGCCAACGTCCGCGCTA
J	CCGCCAGGTGGCCATCGGGCATCCCCAGGTGCAGGTCAGTCA
	TGCTGCGCATGCAACCTGTCGAGCCACTGGCGCCGCTGCCGGCGCGCCTGCTC
	GAGCGCCTGGTGCATTGGGCCCAGGTGCGCCCGGACACCACTTTCATCGCGGC
	ACGCCAGGCAGACGGTGCCTGGCGTTCGATCAGCTACGTGCAGATGCTCGCCG
	ATGTGCGCACCATCGCCGCCAACTTGCTAGGACTGGGCCTCAGTGCCGAGCGC
	CCGCTGGCGCTGCTTTCCGGCAACGACATCGAACACCTGCAAATCGCCCTCGG
	CGCCATGTATGCCGGTATTGCCTATTGCCCGGTGTCGCCGGCCTACGCGCTGTTG
	TCGCAAGACTTCGCCAAGTTGCGCCATGTCTGCGAGGTGCTCACCCCCGGAGT
	GGTCTTCGTCAGCGACAGCCAGCCGTTCCAGCGCGCCTTCGAGGCGGTGCTGG
	ACGATTCGGTCGGCGTGATCAGCGTGCGTGGCCAGGTCGCAGGTCGCCCCAT
	ATAAGCTTCGACAGCCTGTTGCAACCGGGTGACCTGGCGGCGGCCGATGCGGC
	TTTCGCCGCCACCGGGCCGGACACCATCGCCAAATTCCTCTTCACCTCGGGCTC
	GACCAAGCTGCCCAAGGCGGTGATCACCACCCAGCGCATGCTGTGCGCCAATC
	AGCAGATGCTTCTGCAGACTTTTCCGACGTTCGCCGAGGAGCCGCCGGTGCTG
	GTGGACTGGCTGCCGTGGAACCACACGTTCGGCGGTAGCCACAACCTCGGCAT
	CGTGCTTTACAACGGGGGCAGTTTCTACCTGGACGCCGGCAAGCCGACCCCGC
	AAGGCTTCGCCGAAACCTTGCGCAATCTGCGCGAGATTTCCCCCACGGCCTAC
	CTCACCGTACCCAAGGGCTGGGAGGAACTGGTCAAGGCACTGGAGCAGGACC
	CCGCGCTACGCGAGGTGTTCTTTGCCCGCATCAAGCTGTTCTTCTTTGCCGCCG
	CAGGCCTGTCGCAAAGCGTCTGGGACCGGCTGGACCGCATTGCCGAGCAACA
	CTGTGGCGAACGCATCCGCATGATGGCCGGCCTTGGCATGACCGAAGCCTCGC
	CATCGTGCACCTTCACCACCGGGCCTTTGTCGATGGCCGGCTATGTCGGGCTGC
	CGGCACCTGGCTGCGAAGTGAAGCTGGTGCCGGTGGGCGACAAGCTCGAGGC
	GCGCTTCCGTGGCCCGCATATCATGCCGGGCTACTGGCGCTCGCCGCAGCAGAC
	CGCCGAGGCGTTCGACGAGGAGGGCTTCTACTGTTCGGGCGACGCGTTGAAGC
	TGGCCGATGCCAGGCAGCCCGAGCTTGGCCTGATGTTCGATGGCCGTATCGCTG
	AGGACTTCAAACTTTCGTCCGGGGGTATTCGTCAGTGTCGGGCCGCTGCGCAAC
	CGCGCAGTGCTGGAGGGCTCGCCTTACGTACAGGACATCGTGGTCACCGCGCC
	GGACCGTGAATGCCTGGGCCTGCTGGTGTTCCCGCGTCTGCCCGAGTGTCGGC
	GCCTGGCCGGGCTGGCAGAGGATGCCAGCGATGCGCGGGTGCTGGCCAACGA
	CACCGTGCGCAGTTGGTTCGCTGACTGGCTGGAGCGCTTGAACCGCGATGCCC
	AAGGCAACGCCAGCCGTATCGAATGGCTGTCGCTGCTGGCCGAGCCGCCGTCG
	ATCGACGCCGGTGAAATCACCGACAAGGGCTCGATCAATCA
	GCAGCGGCGCGCCGCTCAGGTCGAGGCGCTGTACCGTGGCGAAGACCCCGAC
	GCATTGCACGCCAAGGTGCGGCCTTGA
ech	ATGAGCAAATACGAAGGCCGCTGGACCACCGTGAAGGTCGAACTGGAAGCGG
	GCATCGCCTGGGTGACCCTCAATCGCCCGGAAAAACGCAATGCCATGAGCCCC
	ACCCTGAACCGGGAAATGGTCGACGTGCTGGAAACCCTTGAGCAGGACGCTG
	ACGCTGGCGTGCTGGTATTGACCGGTGCCGGCGAGTCCTGGACCGCCGGCATG
	GACCTGAAGGAGTACTTCCGCGAGGTGGACGCCGGCCCGGAAATCCTCCAGG

Table S6.	DNA	sequences	used	in	this	study
-----------	-----	-----------	------	----	------	-------

	AAAAGATTCGTCGCGAAGCCTCGCAATGGCAATGGAAGTTGCTGCGTCTGTAT
	GCCAAACCGACCATCGCCATGGTCAACGGCTGGTGCTTCGGCGGCGGCGGCTTCAG
	CCCACTGGTGGCATGCGACCTGGCGATCTGCGCCAACGAAGCGACCTTCGGCC
	TGTCGGAAATCAACTGGGGCATCCCGCCTGGTAACCTGGTCAGCAAGGCCATG
	GCCGATACCGTTGGCCATCGTCAGTCGCTGTACTACATCATGACCGGCAAGACC
	TTCGATGGTCGCAAGGCTGCCGAGATGGGCCTGGTGAACGACAGTGTGCCGCT
	GGCCGAGCTGCGTGAAACCACCCGCGAGTTGGCGCTGAACCTGCTGGAAAAG
	AACCCGGTGGTGCTGCGTGCCGCGAAGAATGGCTTCAAGCGTTGCCGCGAGCT
	GACCTGGGAACAGAACGAGGACTACCTCTACGCCAAGCTCGACCAGTCGCGC
	CTGCTGGACACTACCGGCGGCCGCGAGCAGGGCATGAAGCAGTTCCTCGACGA
	CAAGAGCATCAAGCCAGGCCTGCAGGCCTACAAGCGCTGA
vdh	ATGTTGCAGGTGCCTTTGCTGATTGGCGGGCAGTCGCGCCCCGCCAGCGATGG
	ACGAACCTTCGAGCGCTGTAACCCGGTGACTGGCGAGGTGGTGTCGCAGGCTG
	CCGCCGCCACACTGGCCGATGCCGATGCCGCGGTGGCTGCTGCCAGCGCGGCG
	TTTCCGGCCTGGGCCGCCCTGGCACCGGGCGAGCGGCGCAGCCGCTTGCTGGC
	AGGCGCTGATCTGTTGCAGGCGAGGGCCGCCGAGTTCATCGCCGCCGCCGGTG
	AAACCGGGGCCATGGCCAACTGGTATGGCTTCAACGTGAAGTTGGCCGCCAAC
	ATGCTGCGCGAGGCTGCAGCCATGACCACGCAGATCACCGGTGAAGTGATCCC
	CTCGGACGTTCCCGGCAGCTTCGCAATGGCCCTGCGCGCGC
	TGTTGGGCATCGCACCGTGGAACGCCCCGGTGATACTGGCCACGCGTGCCATT
	GCCATGCCGCTGGCCTGCGGCAACACCGTGGTGCTCAAGGCCTCGGAGCTGAG
	CCCGGCGGTCCATCGGCTGATCGGCCAGGTGCTGCACGATGCAGGCATCGGCG
	ACGGCGTGGTCAATGTCATCAGCAATGCGCCGCAGGATGCCCCCGCCATCGTC
	GAGCGGCTGATCGCCAACCCTGCGGTACGCCGGGTCAACTTCACCGGTTCGAC
	GCACGTCGGGCGCATCGTCGGCGAACTGGCGGCCCGCCATCTCAAGCCGGCCC
	TGCTCGAACTGGGCGGCAAGGCACCTTTGCTGGTGCTCGACGATGCCGACCTG
	GACGCCACGGTCGAAGCGGCGGCCTTCGGTGCCTACTTCAACCAGGGGCAGAT
	CTGCATGTCCACCGAGCGCCTTGTGGTGGACAGCTGTATTGCCGACGCTTTCGT
	CGACAAGCTGGCGGTGAAGATCGCCGGGCTGCGTGCAGGTGATCCGCAAGCC
	AGCACCTCGGTGCTCGGCTCGCTGGTCAGCGCAGCGGCCGGC
	GGCACTGATCGACGATGCCGTGGCCAAGGGCGCGCGCCTGGTCAGCGGCGGC
	CAGCTGGAAGGCAGCATCCTGCAACCGACCTTGCTCGACAACGTCGATGCCAG
	CATGCGCCTGTACCGCGAGGAGTCCTTCGGCCCGGTGGCGGTGGTACTGCGCG
	CCGAAGGCGACGAAGCCTTGCTGCAGCTGGCCAACGACTCGGAGTTCGGTCTG
	TCATCGGCCATTTTCAGCCGCGACACCAGCCGCGCCCTGGCCTTGGCCCAACG
	GGTGGAGTCGGGTATCTGCCATATCAACGGCCCGACCGTTCACGATGAAGCGC
	AGATGCCGTTTGGCGGGGTCAAGTCCAGCGGCTATGGCAGCTTCGGCAGCCGC
	ACGGCCATCGATCAGTTCACCCAGTTGCGCTGGGTCACCCTCCAGCACGGCCC
	GCGTCACTATCCCATCTAG
aroY	ATGCAAAACCCCATCAACGATCTCAGAAGCGCCATCGCGTTGCTGCAACGCCA
-	TCCAGGTCACTATATCGAAACCGATCACCCGGTAGATCCCAATGCTGAACTGGC
	GGGCGTCTACCGCCATATCGGCGCGGGGCGGTACCGTAAAACGCCCCACCCGCA
	CGGGCCCGGCCATGATGTTCAATAGCGTGAAGGGCTACCCTGGCTCCCGCATCC
	TGGTAGGTATGCACGCCAGCCGGGAAAGAGCGGCGCTTCTGCTGGGCTGTGTA

	CCCTCGAAGCTGGCACAGCACGTTGGTCAGGCGGTGAAAAACCCGGTTGCAC
	CGGTGGTGGTTCCGGCCTCGCAGGCACCGTGCCAGGAGCAGGTCTTTTACGCC
	GACGATCCGGACTTTGACCTGCGTAAGCTGCTTCCGGCCCCGACCAACACGCC
	GATTGATGCAGGCCCGTTCTTCTGTCTGGGGGCTGGTACTGGCAAGCGATCCGGA
	AGATACCTCGCTGACCGATGTGACCATTCACCGTCTCTGTGTGCAGGAGCGAGA
	TGAACTCTCTATGTTCCTTGCCGCCGGCCGCCATATCGAAGTCTTTCGCAAGAA
	GGCCGAAGCGGCGGGCAAACCGCTGCCGGTAACCATCAATATGGGACTTGACC
	CGGCTATCTACATTGGGGGCCTGTTTCGAAGCGCCAACCACGCCATTCGGTTACA
	ACGAGCTTGGCGTTGCCGGGGCATTACGCCAGCAACCGGTGGAGCTGGTACAG
	GGCGTGGCGGTAAAAGAGAAAGCGATCGCGCGGGGCGGAAATCATCATCGAGG
	GCGAACTGCTTCCCGGCGTGCGCGTAAGAGAAGATCAGCACACCAACACCGG
	CCACGCCATGCCGGAGTTCCCGGGGCTACTGCGGCGAGGCGAATCCGTCTCTGC
	CGGTGATCAAAGTGAAAGCCGTGACGATGCGAAACCACGCGATCCTGCAGAC
	GCTGGTGGGCCCGGGCGAAGAGCACACCACGCTTGCCGGTTTGCCGACCGA
	GCCAGCATTCGCAACGCGGTCGAAGAGGCCATTCCCGGCTTTCTGCAAAACGT
	TTACGCCCACACCGCCGGAGGCGGTAAATTCCTCGGCATTTTACAGGTGAAAA
	AACGCCAGCCGTCAGACGAAGGACGTCAGGGCCAGGCGGCACTTATCGCCCT
	GGCCACCTATTCCGAGCTGAAAAACATTATCCTCGTGGATGAAGACGTGGATAT
	CTTCGACAGCGACGATATCCTGTGGGCAATGACCACCCGCATGCAGGGCGATGT
	GAGCATCACCACGCTTCCGGGGGATCCGCGGCCACCAGCTGGATCCGTCGCAGT
	CACCGGACTACAGCACCTCGATCCGTGGAAACGGCATTTCCTGCAAGACTATCT
	TCGACTGCACGGTGCCGTGGGCGCTGAAGGCGCGGTTTGAACGGGCGCCGTTC
	ATGGAGGTTGACCCCACACCGTGGGCGCCGGAGCTGTTCAGCGATAAAAAATA
	G
BsdB	ATGAAAGCAGAATTCAAGCGTAAAGGAGGGGGGCAAAGTGAAACTCGTTGTCG
	GAATGACAGGGGCAACAGGGGCCATTTTCGGGGGTCAGGCTGCTGCAGTGGCTG
	AAGGCCGCCGGAGTGGAAACCCATCTCGTTGTGTCTCCTTGGGCAAACGTCAC
	GATCAAACACGAAACAGGCTATACGTTACAAGAAGTAGAACAACTGGCCACAT
	ACACTTACTCACATAAGGATCAGGCGGCAGCCATTTCAAGCGGGTCGTTTGATA
	CCGATGGAATGATTGTTGCGCCGTGCAGCATGAAATCTCTCGCAAGCATTCGCA
	CAGGAATGGCGGATAATCTGCTGACACGTGCGGCGGATGTCATGCTCAAGGAG
	AGAAAAAAACTCGTCCTCTTAACGAGAGAGAGACGCCTTTGAACCAAATTCATCT
	CGAAAATATGCTAGCGCTTACGAAAATGGGCACCATCATTCTTCCTCCGATGCC
	GGCATTTTATAATCGGCCGAGAAGCTTAGAGGAAATGGTTGACCATATTGTTTTT
	AGAACGTTGGACCAATTCGGCATTCGGCTTCCTGAAGCGAAGCGCTGGAATGG
	GATTGAAAAACAAAAGGAGGAGCTTGA
BsdC	ATGGCTTATCAAGATTTCAGAGAATTTCCTCGCTGCCCTTGAAAAAGAAGGACAG
1	I IGULIUTTITICAGAATIAAUUAGGGIGAIGGAGGUTAUTATTTAGAUAAAGCAT

	GTGTCATTTCCCGTGATCTTGAGGACCCTGACAACTTCGGCAAACAAA
	GCATTTACAGAATGCAAGTCAAAGGAAAAGACCGCCTTGGCATTCAGCCTGTC
	CCGCAGCACGATATTGCAATCCATCTGCGCCAAGCTGAAGAACGCGGCATCAA
	CCTTCCGGTCACTATTGCGCTCGGCTGTGAGCCGGTCATTACAACGGCGGCATC
	GACTCCGCTTCTCTATGATCAATCAGAATACGAAATGGCAGGTGCGATTCAAGG
	CGAACCATATCGCATCGTCAAATCAAAGCTGTCTGATCTTGATGTTCCGTGGGG
	CGCTGAAGTGGTGCTTGAAGGTGAGATTATTGCCGGAGAGCGCGAATATGAAG
	GGCCGTTCGGTGAATTCACAGGCCATTATTCCGGCGGACGCAGCATGCCGATTA
	TCAAAATTAAACGCGTCTATCACAGAAACAATCCGATCTTTGAACATTTATACTT
	AGGCATGCCTTGGACAGAATGCGATTACATGATCGGCATTAACACATGCGTGCC
	GCTTTATCAGCAGTTAAAAGAAGCGTATCCGAACGAAATTGTGGCAGTGAACG
	CCATGTACACACACGGTTTAATCGCGATTGTTTCCACAAAAACCCCGCTATGGCG
	GATTTGCGAAAGCGGTCGGCATGCGCGCACTCACAACGCCGCACGGACTCGGC
	TACTGCAAAATGGTCATAGTCGTTGATGAGGATGTCGATCCATTCAACCTTCCG
	CAGGTCATGTGGGCGCTTTCGACCAAAATGCATCCGAAACATGATGCGGTCATC
	ATTCCGGACTTATCTGTCCTGCCGCTTGATCCGGGATCCAATCCATCAGGAATCA
	CTCACAAAATGATTCTCGACGCCACTACACCGGTTGCGCCGGAAACAAGAGGC
	CATTATTCACAGCCGCTTGATTCTCCGCTAACAACGAAAGAATGGGAACAAAA
	ACTAATGGACTTAATGAATAAATAA
BsdD	ATGCATACATGTCCTCGATGCGACTCAAAAAAGGGAGAAGTCATGAGCAAATC
_ ~	GCCTGTAGAAGGCGCATGGGAAGTTTATCAGTGCCAAACATGCTTTTTACATG
	GAGATCCTGTGAACCGGAAAGCATTACAAATCCCGAAAAATACAATCCAGCGT
	TTAAAATTGATCCAAAGGAAACAGAAACAGCAATTGAAGTTCCGGCGGTGCCG
	GAACGAAAGGCTTGA
KndB	ATGAAACTGATTATTGGGATGACGGGGGGCCACCGGGGCACCGCTTGGGGTGGC
I ···	ATTGCTGCAGGCGCTGCGCGATATGCCGGAGGTGGAAACCCATCTGGTGATGTC
	GAAATGGGCCAAAACCACCATCGAGCTGGAAACGCCCTGGACGGCGCGCGAA
	GTGGCCGCGCTGGCGGACTTTTCCCACAGCCCGGCAGACCAGGCCGCCACCAT
	CTCATCCGGTTCATTTCGTACCGACGGCATGATCGTTATTCCCTGCAGTATGAAA
	ACGCTTGCAGGCATTCGCGCGGGTTATGCCGAAGGGCTGGTGGGCCGCGCGGC
	GGACGTGGTGCTCAAAGAGGGGCGCAAGCTGGTGTTGGTCCCGCGGGAAATG
	CCGCTCAGCACGATCCATCTGGAGAACATGCTGGCGCTGTCCCGCATGGGCGT
	GGCGATGGTCCCGCCCATGCCAGCTTACTACAACCACCCGGAGACGGTTGACG
	ATATCACCAATCATATCGTCACCCGGGTGCTGGATCAGTTTGGCCTCGACTATCA
	CAAAGCGCGCCGCTGGAACGGCTTACGCACGGCAGAACAATTTGCACAGGAG
	ATCGAATAA
KndC	ATGGCTTTTGATGATTTGCGCAGCTTTTTGCAGGCGCTGGATGACCAGGGACAA
input	CTGCTGAAAAATCAGTGAAGAGGTGAACGCTGAGCCCGATCTGGCGGCGGCCGC
	CAATGCGACCGGACGCATCGGCGACGGTGCCCCGGCGCTGTGGTTCGATAATAT
	TCGCGGCTTTAACGACGCTCGCGTGACGATGAACACCATCGGCTCGTGGCAGA
	ACCATGCCATCTCGCTGGGCCTGCCGCCTAACACGCCGGTGAAAAAGCAGATT
	GATGAGTTCATTCGCCGCTGGGATAACTTCCCGGTGACGCCAGAGCGCCGCGC
	CAACCCGGCGTGGGCAGAAAATACTGTTGATGGCGATGATATCAACCTGTTCGA
	TATTCTGCCGCTGTTCCGCCTCAATGATGGTGACGGCGGTTTCTACCTCGATAAA

	GCCTGTGTCGTTTCACGCGATCCGCTGGATAAAGATAACTTCGGTAAGCAAAAC
	GTCGGTATCTACCGCATGGAAGTGAAAGGCAAGCGCAAGCTCGGCCTGCAGCC
	GGTACCGATGCACGATATCGCGCTGCATCTGCACAAAGCGGAAGAGCGTGGGG
	AAGATCTGCCGATCGCCATTACCCTCGGTAACGACCCGATTATTACCCTGATGGG
	CGCCACGCCGCTGAAATACGATCAGTCTGAATATGAGATGGCTGGC
	CGAGAGCCCGTATCCCATCGCTACCGCGCCGCTGACCGGCTTTGACGTGCCCTG
	GGGTTCGGAAGTGATCCTCGAAGGGGTCATTGAAGGGCGTAAGCGTGAGATCG
	AGGGGCCGTTCGGTGAATTTACCGGTCACTACTCCGGCGGTCGTAACATGACG
	GTAGTGCGTATCGACAAAGTCTCTTATCGCAGCAAACCGATTTTTGAATCGCTCT
	ACCTCGGTATGCCGTGGACCGAGATTGACTATCTGATGGGCCCGGCGACCTGCG
	TACCGCTGTATCAGCAGCTGAAGGCCGAATTTCCGGAAGTGCAGGCGGTCAAC
	GCCATGTACACCCATGGTCTGCTGGCGATCATCTCCACCAAAAAACGCTACGGC
	GGTTTTGCCCGCGCGGTGGGCCTGCGGGCGATGACCACTCCCCACGGCCTCGG
	CTATGTGAAGATGGTGATCATGGTTGATGAAGACGTCGACCCGTTCAACCTGCC
	GCAGGTGATGTGGGCGCTCTCCTCGAAGGTTAACCCGGCGGGAGATCTGGTGC
	AGTTGCCGAACATGTCGGTCCTTGAACTTGACCCAGGCTCCAGCCCGGCAGGC
	ATTACCGACAAACTGATTATCGACGCCACCACCCCGGTTGCGCCGGACCTTCGC
	GGTCACTACAGCCAGCCGGTGCAGGATCTGCCGGAAACCAAAGCCTGGGCTG
	AAAAACTGACCGCTATGCTGGCCAACCGTAAATAA
KvdD	ATGATTTGTCCACGTTGCGCCGATGAAAAGATTGAAGTCATGGCGACCTCGCCG
I	GTGAAAGGGGTCTGGACCGTGTATCAGTGCCAGCACTGTCTTTACACCTGGCG
	AGATACCGAGCCGCTGCGCCGCACCAGCCGCGAACACTATCCGGAAGCGTTCC
	GCATGACGCAGAAAGATATCGATGAGGCGCCGCAGGTGCCGCACGTACCGCCG
	CTATTGCCGGAAGATAAGCGTTAA
tpl	ATGAATTATCCGGCAGAACCCTTCCGTATTAAAAGCGTTGAAACTGTATCTATGA
1	TCCCGCGTGATGAACGCCTTAAGAAAATGCAGGAAGCGGGATACAATACTTTCC
	TGTTAAATTCGAAAGATATTTATATTGACCTGCTGACAGACA

	GACGAGTTCCCGGCGCAAAGCCTGGCTGCCAGTATCTATGTGGAAACCGGCGT
	ACGTAGTATGGAGCGCGGAATTATCTCTGCGGGCCGTAATAACGTGACTGGTGA
	ACACCACAGGCCGAAACTGGAAACCGTGCGTCTGACTATTCCACGCCGCGTTT
	ATACTTACGCGCATATGGATGTAGTGGCTGACGGTATTATTAAACTTTACCAGCA
	CAAAGAAGATATTCGCGGGCTGAAGTTTATTTACGAGCCGAAGCAGCTCCGTTT
	CTTTACTGCACGCTTTGACTATATCTAA
tpl(M379V)	ATGAATTATCCGGCAGAACCCTTCCGTATTAAAAGCGTTGAAACTGTATCTATGA
1 ()	TCCCGCGTGATGAACGCCTTAAGAAAATGCAGGAAGCGGGATACAATACTTTCC
	TGTTAAATTCGAAAGATATTTATATTGACCTGCTGACAGACA
	CAATGAGCGACAAGCAGTGGGCCGGCATGATGATGGGTGATGAAGCCTACGCG
	GGCAGCGAAAACTTCTATCATCTGGAAAGAACCGTGCAGGAACTGTTTGGCTT
	TAAACATATTGTTCCTACTCACCAGGGGGGGGGGGGGGG
	GCTGGCAATTAAACCGGGGCAATATGTTGCCGGGAATATGTATTTCACTACTACC
	CGTTATCACCAGGAAAAAAATGGTGCGGTGTTTGTCGATATCGTTCGT
	GCGCACGATGCCGGTCTGAATATTGCTTTTAAAGGTGATATCGATCTTAAAAAAT
	TACAAAAACTGATTGATGAAAAAGGCGCCGAGAATATTGCCTATATTTGCCTGG
	CAGTCACGGTTAACCTCGCAGGCGGGCAGCCGGTTTCCATGGCTAACATGCGC
	GCGGTGCGTGAACTGACTGCAGCACATGGCATTAAAGTGTTCTACGACGCTAC
	CCGCTGCGTAGAAAACGCCTACTTTATCAAAGAGCAAGAGCAGGGCTTTGAGA
	ACAAGAGCATCGCAGAGATCGTGCATGAGATGTTCAGCTACGCCGACGGTTGT
	ACCATGAGTGGTAAAAAAGACTGTCTGGTGAATATCGGCGGCTTCCTGTGCATG
	AACGATGACGAAATGTTCTCTTCTGCCAAAGAGTTAGTCGTTGTCTACGAAGGC
	ATGCCATCTTACGGCGGCCTGGCCGGACGCGACATGGAAGCCATGGCGATTGG
	TCTGCGCGAAGCCATGCAGTATGAGTACATCGAGCACCGCGTGAAGCAGGTTC
	GCTATCTGGGCGACAAGCTGAAAGCCGCTGGTGTACCGATTGTTGAACCGGTG
	GGCGGTCATGCGGTATTCCTCGATGCGCGTCGCTTCTGTGAGCATCTGACGCAG
	GACGAGTTCCCGGCGCAAAGCCTGGCTGCCAGTATCTATGTGGAAACCGGCGT
	ACGTAGTGTGGAGCGCGGAATTATCTCTGCGGGCCGTAATAACGTGACTGGTGA
	ACACCACAGGCCGAAACTGGAAACCGTGCGTCTGACTATTCCACGCCGCGTTT
	ATACTTACGCGCATATGGATGTAGTGGCTGACGGTATTATTAAACTTTACCAGCA
	CAAAGAAGATATTCGCGGGCTGAAGTTTATTTACGAGCCGAAGCAGCTCCGTTT
	CTTTACTGCACGCTTTGACTATATCTAA

References

- 1. T. S. Lee, R. A. Krupa, F. Zhang, M. Hajimorad, W. J. Holtz, N. Prasad, S. K. Lee and J. D. Keasling, *J. Biol. Eng.*, 2011, **5**, 1-14.
- Y. Jiang, B. Chen, C. Duan, B. Sun, J. Yang, S. Yang and R. M. Kelly, *Appl. Environ. Microbiol.*, 2015, 81, 2506-2514.