Electronic Supplementary Material (ESI) for Green Chemistry. This journal is © The Royal Society of Chemistry 2024

Boosting the activity of UiO-66(Zr) by defect engineering: efficient aldol condensation of furfural and MIBK for the production of bio jet-fuel precursors

María Sanz^a, Pedro Leo^a, Carlos Palomino^b, Marta Paniagua^a, Gabriel Morales^{a,c}, Juan A. Melero^{a,c,*}

^a Chemical and Environmental Engineering Group. ESCET, Universidad Rey Juan Carlos. c/Tulipán s/n 28933 Móstoles, Spain.

^b Department of Chemistry, University of the Balearic Islands, Cra. de Valldemossa, 07122, Spain.

^c Instituto de Investigación de Tecnologías para la Sostenibilidad. ESCET, Universidad Rey Juan Carlos. c/Tulipán s/n 28933 Móstoles, Spain.

Green Chemistry

Electronic Supplementary Information

* Corresponding author:

E-mail: juan.melero@urjc.es Phone-number: +34-91 665 50 83

Sample Name	ZrCl₄ (mmol)	MOD (ml)	DMF (ml)	BDC (mmol)	С _{мор} (mol/L)	MOD/DMF (mol)	MOD/BDC (mol)			
UiO-66(Zr)-DF	16.2	-	100	32.4	-	-	-			
UiO-66(Zr)	6	-	100	6	-	-	-			
Modulator: Formic Acid (pKa = 3.77)										
UiO-66(Zr)-FA1	6	2	98	6	0.51	0.04	8.45			
UiO-66(Zr)-FA2	6	8	92	6	2.04	0.17	33.82			
UiO-66(Zr)-FA3	6	16	84	6	4.07	0.38	67.63			
UiO-66(Zr)-FA4	6	20	80	6	5.09	0.49	84.54			
Modulator: Trifluoroacetic acid (pKa = 0.23)										
UiO-66(Zr)-TFA1	6	2	98	6	0.26	0.02	4.30			
UiO-66(Zr)-TFA2	6	8	92	6	1.03	0.09	17.19			
Modulator: Hydrochloric acid (pKa = -6.3)										
UiO-66(Zr)-HCl1	6	2	98	6	0.24	0.02	4.05			
UiO-66(Zr)-HCl2	6	8	92	6	0.97	0.08	16.19			
UiO-66(Zr)-HCl3	6	16	84	6	1.95	0.18	32.37			
UiO-66(Zr)-HCl4	6	20	80	6	2.44	0.24	40.46			
UiO-66(Zr)-HCl5	6	24	76	6	2.92	0.30	48.56			

 Table ESI-1 Composition in the synthesis media for UiO-66(Zr) materials.

MOD = modulator; DMF = N,N'-dimethyl formamide; BDC = benzene-1,4-dicarboxilate.

Fig. ESI-1 Powder X-ray diffraction patterns of UiO-66(Zr)-DF, UiO-66(Zr) parent and modulated UiO-66(Zr) series of materials.

Sample	T _{plat} (°C) ^a	W _{Exp-Plat} (%) ^b	NL _{Exp} ^c	Xd	Composition at W _{Exp.Plat} ^e
UiO-66(Zr)-DF	370	220	6.00	0.00	Zr ₆ O ₆ (BCD) ₆
UiO-66(Zr)	370	204	5.20	0.80	Zr ₆ O _{6.8} (BCD) _{5.2}
UiO-66(Zr)-FA1	370	199	4.95	1.05	Zr ₆ O _{7.05} (BCD) _{4.95}
UiO-66(Zr)-FA2	370	197	4.88	1.13	Zr ₆ O _{7.13} (BCD) _{4.87}
UiO-66(Zr)-FA3	370	192	4.60	1.40	Zr ₆ O _{7.4} (BCD) _{4.6}
UiO-66(Zr)-FA4	370	187	4.35	1.65	Zr ₆ O _{7.65} (BCD) _{4.35}
UiO-66(Zr)-TFA1	390	194	4.70	1.30	Zr ₆ O _{7.3} (BCD) _{4.7}
UiO-66(Zr)-TFA2	390	192	4.60	1.40	Zr ₆ O _{7.4} (BCD) _{4.6}
UiO-66(Zr)-HCl1	370	195	4.75	1.25	Zr ₆ O _{7.25} (BCD) _{4.75}
UiO-66(Zr)-HCl2	370	187	4.35	1.65	Zr ₆ O _{7.65} (BCD) _{4.35}
UiO-66(Zr)-HCl3	370	186	4.30	1.70	Zr ₆ O _{7.7} (BCD) _{4.3}
UiO-66(Zr)-HCl4	370	187	4.35	1.65	Zr ₆ O _{7.65} (BCD) _{4.35}
UiO-66(Zr)-HCl5	370	184	4.20	1.80	Zr ₆ O _{7.8} (BCD) _{4.2}

Table ESI-2 Quantification of linker deficiencies in defective UiO-66 samples.

^a Temperature of the plateau; ^b Experimental weight of the plateau; ^c Number of linkers per defective Zr_6 formula unit calculated as ($W_{Exp-Plat} - W_{End}$)/Wt.PL_{Theo} being Wt.PL_{Theo}=20 % when the end weight of the TGA run is normalized to 100 % (W_{End} = 100 %); ^d Number of linker deficiencies per Zr_6 formula unit calculated as 6 - NL_{Exp}; ^e Composition of the material assuming the following formula $Zr_6O_{6+x}(BDC)_{6-x}$

Fig. ESI-2. Linker deficiencies corresponding to modulated UiO-66(Zr) series of materials.

Fig. ESI-3 Argon adsorption-desorption isotherms of UiO-66(Zr)-DF, UiO-66(Zr) parent and modulated UiO-66(Zr) series of materials.

Fig. ESI-4 a) Powder X-ray diffraction patterns; b) Thermogravimetry analysis, and c) Argon adsorption-desorption isotherms of UiO-66(Zr)-TFA2 and UiO-66(Zr)-TFA2-300.

Fig. ESI-5 Catalytic activity of UiO-66(Zr)-TFA2 and UiO-66(Zr)-TFA2-300 in the aldol condensation of FAL and MIBK. Reaction conditions: time = 4 h; temperature = 130 °C; MIBK/FAL molar ratio = 4; FAL/Cat mass ratio = 10.

Scheme ESI-1. Transformations and constants considered for the kinetics analysis of the aldol condensation of FAL and MIBK.

Fig. ESI-6. Experimental (symbols) and modelled (dash lines) concentrations of the compounds involved in the aldol condensation of FAL and MIBK over UiO-66(Zr)-HCl3. Reaction conditions: MIBK/FAL molar ratio = 4/1; FAL/Cat mass ratio = 10/1.

Fig. ESI-7. Powder X-ray diffraction patterns of the UiO-66(Zr)-HCl3, fresh and after three consecutive uses in reaction under different dilution. Reaction conditions: time = 3 h; temperature = 130 °C; MIBK/FAL molar ratio = 4 (FAL/Cat = 10) and 8 (FAL/Cat = 5).