Electronic Supplementary Material (ESI) for Industrial Chemistry & Materials. This journal is © Institute of Process Engineering of CAS 2023

## **Electronic Supplementary Information (ESI)**

## Ozonolysis-oxidation-driven top-down strategy for target preparation of

## ultrathin 2D metal-organic framework monolayers

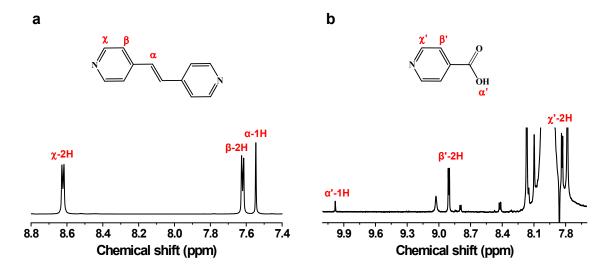
Baoliu Zhuo,<sup>†</sup>a Aidong Tan,<sup>†</sup>ab Zhipeng Xiang,<sup>\*</sup>a Jinhua Piao,<sup>c</sup> Wenhao Zheng,<sup>a</sup> Kai Wan,<sup>a</sup> Zhenxing Liang,<sup>\*</sup>a and Zhiyong Fu<sup>\*</sup>a

<sup>a</sup>Guangdong Provincial Key Laboratory of Fuel Cell Technology, School of Chemistry and Chemical

Engineering, South China University of Technology, Guangzhou 510641, P.R. China

<sup>b</sup>Institute of Energy Power Innovation, North China Electric Power University, Beijing, 102206, P.R.

China


<sup>c</sup>School of Food Science and Engineering, South China University of Technology, Guangzhou 510641,

P.R. China

<sup>†</sup>These authors contributed equally to this work.

\*Corresponding authors: E-mail: xzp20209094@scut.edu.cn (Z.P. Xiang), zliang@scut.edu.cn (Z.X.

Liang), zyfu@scut.edu.cn (Z.Y. Fu)



**Fig. S1** (a) The <sup>1</sup>H NMR spectra of the trans-1, 2-bis(4pyridyl)ethylene; (b) The <sup>1</sup>H NMR spectra of the trans-1, 2-bis(4pyridyl)ethylene after ozone treatment in DMF at 0 °C.

The <sup>1</sup>H nuclear magnetic resonance (NMR) spectroscopy is employed to charaterize the structure of the trans-1, 2-bis(4pyridyl)ethylene before and after ozone treatment. It can be seem from Fig. S2b that the chemical shifts at  $\delta = 10.12$  ppm, 8.91 ppm , 8.90 ppm, 7.84 ppm ppm and 7.83ppm, which are consistent with the theoretical <sup>1</sup>H NMR spectra of the isonicotinic acid. These result confirming the breakage of the olefin group in the *trans*-1, 2-bis(4pyridyl)ethylene.

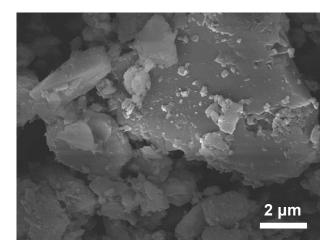
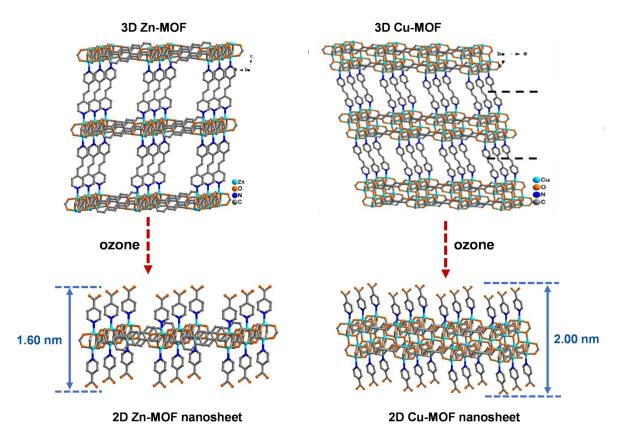




Fig. S2 SEM image of the 3D pillar-layered Co-MOF precursor.



**Fig. S3** The 3D pillar-layered structure of the Zn-MOF and Cu-MOF and the corresponding structure of the 2D Zn-MOF nanosheet and 2D Zn-MOF nanosheet.

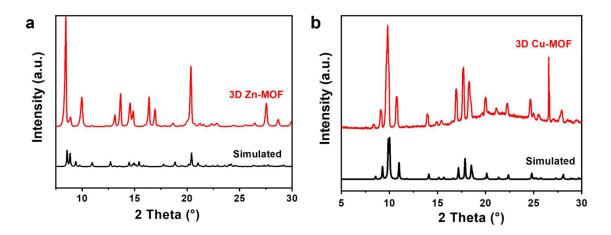



Fig. S4 The simulated XRD patterns of the 3D Zn-MOF and 3D Cu-MOF

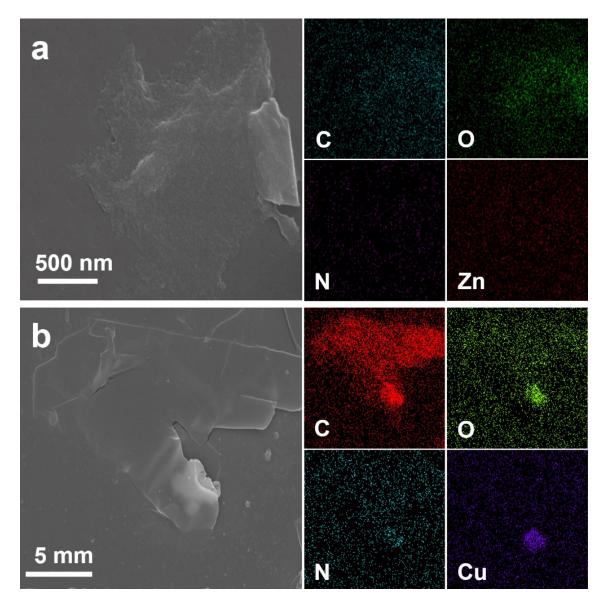



Fig. S5 (a) SEM images of 2D Zn-MOF and corresponding elemental maps; b) SEM images of 2D

Cu-MOF and corresponding elemental maps.

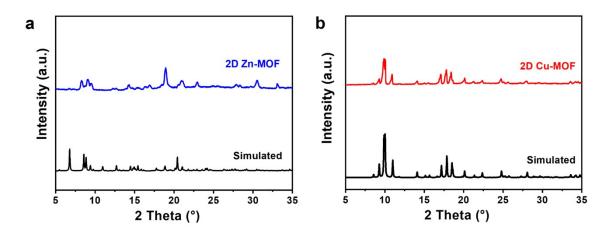
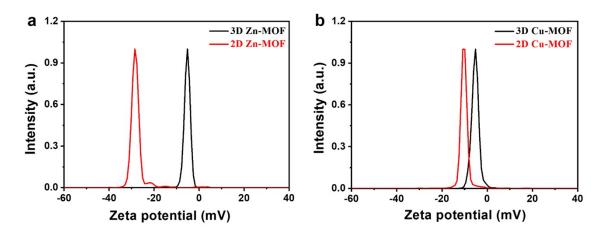




Fig. S6 The simulated XRD patterns of the 2D Zn-MOF and 2D Cu-MOF.



**Fig. S7** Zeta potential of the (a) 3D Zn-MOF precursor, 2D Zn-MOF nanosheets and the (b) 3D Cu-MOF precursor, 2DCu-MOF nanosheet.