Supplementary Information

Theoretical Investigation of Carbon Dioxide on MgH_2 with

Cobalt Catalyst

Sara Rozas,^a Fabiana C. Gennari,^b Mert Atilhan,^c Alfredo Bol^{d,e} Santiago Aparicio^{a,e*}

^a Department of Chemistry, University of Burgos, 09001 Burgos, Spain ^b National Scientific and Technical Research Council (CONICET), Bariloche Atomic Centre (CNEA), R8402AGP, S. C. de Bariloche, Río Negro, Argentina ^c Department of Chemical and Paper Engineering, Western Michigan University, Kalamazoo MI 49008-5462, USA ^d Department of Physics, University of Burgos, 09001 Burgos, Spain ^e International Research Center in Critical Raw Materials for Advanced Industrial Technologies (ICCRAM), University of Burgos, 09001 Burgos, Spain

*Corresponding author: <u>sapar@ubu.es</u> (S.A.)

Fig. S1. Initial arrangement of the seven considered sites for the CO_2 molecule adsorption (a); the 1 to 5 CO_2 molecules considered adsorption sites (b); the isolated CO_2 molecule properties after optimization (c); the Co SAC studied sites (d); the Co clusterization atoms sites and order (e); and the Co layer growing disposition (f) on the MgH₂ clean slab. Atom color code: (white) hydrogen, (pink) magnesium, (green) cobalt.

Fig. S2. Top- and side-view of the 1 to 5 CO_2 adsorption structures. Atom color code: (white) hydrogen, (pink) magnesium, (red) oxygen, (blue) carbon.

Table S1. MgH_2 first layer bond distances (Å) and angles (deg.) deformation after geometric optimization for the most stable studied structures.

	ω / degree				r / Å								
System	ω	ω ₂	ω ₃	ω ₄	r н4-н5	г H4-Mg2	г H5-Mg3	r H4-Mg8	г H5-Mg8	r H4-Mg1	r H5-Mg1	r H4-Mg4	r H5-Mg4
MgH ₂ Slab		15	7.78		2.70	1.82	1.82	2.02	2.02	3.44	3.44	3.44	3.44
CO ₂ P2	159.78	157.06	156.97	159.53	2.67	1.82	1.82	2.03	2.04	3.36	3.39	3.39	3.35
CO ₂ P7	156.42	157.09	163.08	156.41	2.62	1.81	1.82	2.02	1.96	3.42	3.49	3.36	3.26
4 CO ₂	160.46	149.94	174.35	168.26	2.62	2.31	1.81	2.70	1.82	3.02	3.35	3.35	2.91
Co SAC / C2	157.78	133.91	132.37	159.04	3.10	1.86	1.86	3.15	3.21	3.46	3.56	3.49	3.42
Co SAC / C1	164.15	158.00	160.82	163.94	2.41	1.90	1.84	2.11	2.11	3.21	3.23	3.23	3.22
7 Co	128.04	123.71	147.37	157.59	2.77	2.05	2.51	2.36	2.31	4.38	2.68	2.71	4.04
4/4 Co	108.90	140.01	133.06	122.26	2.13	2.18	2.05	2.22	2.24	3.45	3.62	3.70	3.25
C3 CO ₂	147.95	153.42	151.27	49.84	2.53	1.83	1.93	2.08	2.08	2.24	3.32	5.03	3.99
2 Co CO ₂	162.23	157.13	168.92	149.47	2.49	1.95	2.13	2.28	2.05	3.60	2.95	2.90	3.74
C2 CO ₂ + 4 H ₂	169.00	156.71	154.22	157.53	2.38	2.71	1.84	2.12	2.44	4.10	3.80	2.38	2.26
2 Co CO ₂ + 4 H	160.91	160.61	158.65	161.06	2.31	2.09	1.98	2.24	1.94	3.30	3.25	3.03	3.41

Table S2 Adsorption energy (per atom) for n Co atoms clusterization (1 to 9 atoms) on MgH_2 surface. The value for the configuration with the highest energy (7 Co) is reported in bold.

Cluster Co	E _{ads} (eV)
1 Co	-7.93
2 Co	-8.16
3 Co	-9.70
4 Co	-9.43
5 Co	-3.09
6 Co	-5.24
7 Co	-10.55
8 Co	-8.75
9 Co	-8.80

Table S3 Adsorption energy (per atom) for n Co atoms MgH_2 surface coverage (1/4 to 4/4 coverage). The value for the configuration with the highest energy (4/4 Co coverage) is reported in bold.

Layer Co	E _{ads} (eV)
1/4	-7.18
2/4	-7.78
3/4	-8.98
4/4	-9.43

Table S4. Interatomic distances in Å, between cobalt atoms for the 1 to 9 atoms cluster formation structures. Subscripts indicate Co atom number, as well as the addition order. Atom color code: (white) hydrogen, (pink) magnesium, (green) cobalt.

	Cluster Co								
	1 Co	2 Co	3 Co	4 Co	5 Co	6 Co	7 Co	8 Co	9 Co
r _{_1-2} / Å	-	2.17	2.25	2.28	2.25	2.46	3.89	3.76	3.60
r ₁₋₃ / Å	-	-	2.26	2.20	2.25	2.19	2.73	3.40	2.59
r ₁₋₄ / Å	-	-	-	2.28	2.23	2.29	2.23	2.31	2.55
r _{_1-5} / Å	-	-	-	-	2.22	2.30	2.84	2.65	3.65
r ₁₋₆ / Å	-	-	-	-	-	2.26	2.25	2.26	2.32
r _{_1-7} / Å	-	-	-	-	-	-	2.27	2.30	2.28
r ₁₋₈ / Å	-	-	-	-	-	-	-	2.24	2.23
r ₁₋₉ / Å	-	-	-	-	-	-	-	-	2.28
r ₂₋₃ / Å	-	-	2.29	2.38	3.46	2.25	-	-	-
r ₂₋₆ / Å	-	-	-	-	-	2.21	2.25	2.21	2.40
r ₂₋₇ / Å	-	-	-	-	-	-	2.70	2.66	2.28
r ₃₋₄ / Å	-	-	-	2.6	2.77	3.83	4.23	-	-
r ₃₋₇ / Å	-	-	-	-	-	-	2.22	2.29	2.36
r ₄₋₅ / Å	-	-	-	-	3.58	2.30	3.38	3.99	-
r ₄₋₈ / Å	-	-	-	-	-	-	-	2.32	2.26
r ₅₋₂ / Å	-	-	-	-	2.73	-	-	-	-
r ₅₋₆ / Å	-	-	-	-	-	2.24	2.39	2.25	2.31
r ₅₋₉ / Å	-	-	-	-	-	-	-	-	2.57

Table S5. Interatomic distances in Å, between cobalt atoms of the 1/4 to 4/4 coverage layer of Co structures. Numbers indicate Co atom number, as well as the addition order, where 1/4 coverage corresponds to 1-4 atoms, 2/4 coverage to 1-6 atoms, 3/4 coverage to 1-8 atoms and 4/4 coverage to 1-9 atoms. Atom color code: (white) hydrogen, (pink) magnesium, (green) cobalt.

	Co cluster							
r _{co-co} /Å —	$\frac{1}{4}$ Co	$\frac{2}{4}$ Co	$\frac{3}{4}$ Co	$\frac{4}{4}$ Co				
r	2.40	2.31	2.41	2.29				
r 1-3	2.32	2.32	2.83	2.28				
r 1-4	2.20	2.43	2.21	2.81				
r1-5	-	2.32	2.56	2.41				
r 1-7	-	-	2.25	2.61				
r 1-8	-	-	2.27	2.27				
r	2.27	2.16	2.30	2.45				
r2-5	-	2.26	2.30	2.31				
r2-6	-	2.19	2.24	4.15				
۲ ₃₋₄	2.28	2.20	2.26	2.38				
r ₃₋₈	-	-	4.03	3.05				
r ₃₋₉	-	-	-	2.17				
r 5-7	-	-	2.34	2.64				
r	-	-	2.21	2.60				
r ₈₋₉	-	-	-	2.26				

Fig. S3. Top- and side-view of the Co clusterization (1 to 9 atoms) structures. Atom color code: (white) hydrogen, (pink) magnesium, (green) cobalt.

Fig. S4. Top- and side-view of the Co coverage (1/4 to 4/4 slab coverage) structures. Atom color code: (white) hydrogen, (pink) magnesium, (green) cobalt.

Fig. S5. Detail of the of the geometric parameters related to 7 Co on MgH_2 structure.

Fig. S6. Top- and side-view of the CO_2 adsorption on Co SAC structures for the C2 - C5 sites and considering parallel (a) and perpendicular (b) CO_2 orientation with respect to slab surface. Atom color code: (white) hydrogen, (pink) magnesium, (green) cobalt, (red) oxygen, (blue) carbon.

Fig. S7. Top- and -side view of the CO_2 adsorption on C3 Co SAC and 2 Co doped structures considering parallel (a) and perpendicular (b) CO_2 disposition with respect to slab surface. Atom color code: (white) hydrogen, (pink) magnesium, (green) cobalt, (red) oxygen, (blue) carbon.

Fig. S8. Top- and -side view of $1 \text{ CO}_2 + 2$ (a) and 4 (b) H₂ adsorption on C2 Co SAC and 2 Co doped structures. Atom color code: (white) hydrogen, (pink) magnesium, (green) cobalt, (red) oxygen, (blue) carbon.

Table S6. Bader ionic charges for CO_2 (C_1 , O_1 and O_2) and surface (first and second MgH₂ layer, $H_1 - H_8$ and Mg₁ – Mg₈) atoms after CO₂ adsorption on MgH₂ for configuration P2, P7 and 4 CO₂.

	Atom	MgH_2 Slab	CO ₂	1 CO ₂ P2	1 CO ₂ P7	4 CO ₂					
	Atom	Ionic charges									
	H_{1}	-0.76	-	-0.76	-0.76	-0.74					
	H ₂	-0.75	-	-0.76	-0.76	-0.74					
	Mg_1	+1.55	-	+1.56	+1.53	+1.60					
	Mg_2	+1.55	-	+1.55	+1.54	+1.57					
	$H_{_3}$	-0.78	-	-0.76	-0.75	-0.76					
First layer	H_4	-0.76	-	-0.74	-0.76	-0.16					
(MgH ₂)	H ₅	-0.76	-	-0.75	-0.76	-0.74					
	H ₆	-0.76	-	-0.76	-0.75	-0.74					
	Mg_{3}	+1.55	-	+1.55	+1.57	+1.59					
	Mg_4	+1.55	-	+1.56	+1.54	+1.58					
	H ₇	-0.75	-	-0.76	-0.76	-0.75					
	$H_{_8}$	-0.76	-	-0.76	-0.76	-0.74					
Second layer (MgH ₂)	Mg_8	+1.56	-	+1.57	+1.57	+1.58					
	O ₁ (1)	-	+0.22	-1.02	-1.07	-1.07					
	0 ₂ (1)	-	+0.22	-0.99	-1.01	-0.95					
	C_1(1)	-	-0.44	+1.95	+2.11	+1.98					
	O ₁ (2)	-	-	-	-	-1.12					
	0 ₂ (2)	-	-	-	-	-1.22					
0	C_(2)	-	-	-	-	+1.56					
	O ₁ (3)	-	-	-	-	-1.01					
	0 ₂ (3)	-	-	-	-	-1.10					
	C ₁ (3)	-	-	-	-	+2.07					
	O ₁ (4)	-	-	-	-	-1.02					
	O ₂ (4)	-	-	-	-	-1.07					
	C ₁ (4)	-	-	-	-	+2.05					

Table S7. Bader ionic charges for Co (Co₁ - C₉) and surface (first and second MgH₂ layer, H₁ – H₈ and Mg₁ – Mg₈) atoms after Co adsorption in configuration C2, 4/4 Co and 7 Co.

		MgH_2Slab	Со	1 Co C2	4/4 Co	7 Co
	Atom			Ionic charge		
	H	-0.76	-	-0.76	-0.43	-0.50
	H ₂	-0.75	-	-0.76	-0.80	-0.77
	Mg_1	+1.55	-	+1.52	+1.52	+1.49
	Mg_2	+1.55	-	+1.56	+1.48	+1.50
	Η ₃	-0.76	-	-0.76	-0.53	-0.51
First layer	H_4	-0.76	-	-0.56	-0.26	-0.35
(MgH ₂)	Η ₅	-0.76	-	-0.56	-0.36	-0.28
	H ₆	-0.76	-	-0.75	-0.32	-0.48
	Mg_{3}	+1.55	-	+1.56	+1.53	+1.50
	Mg_4	+1.55	-	+1.53	+1.50	+1.55
	H ₇	-0.75	-	-0.76	-0.48	-0.76
	H ₈	-0.76	-	-0.75	-0.53	-0.54
Second layer (MgH ₂)	Mg_8	+1.56	-	+1.58	+1.55	+1.55
	Co ₁	-	-4.60 × 10 ⁻⁵	-0.32	-0.05	-0.26
	Co2	-	-	-	-0.30	-0.04
	Co3	-	-	-	-0.21	-0.03
	Co ₄	-	-	-	-0.43	-0.49
Со	Co ₅	-	-	-	-0.37	-0.32
	Co ₆	-	-	-	-0.23	-0.31
	Co ₇	-	-	-	-0.12	-0.24
	Co ₈	-	-	-	-0.20	-
	Co	-	-	-	-0.38	-

Table S8. Bader ionic charges for CO₂ (C₁, O₁ and O₂), H₂ (H₁ and H₂), Co (Co₁ – C₉) and surface (first and second MgH₂ layer, H₁ – H₈ and Mg₁ – Mg₈) atoms after CO₂ / H₂ adsorption in configuration C3 CO₂ ||, 2 Co CO₂ ||, C2 CO₂ + 4 H₂ and 2 Co CO₂ + 4 H₂.

	Atom	MgH ₂ Slab	H ₂	C3 CO ₂	2 Co CO ₂	C2 CO ₂ + 4 H ₂	2 Co CO ₂ + 4 H ₂
					Ionio	c charge	
	$H_{_1}$	-0.76	-	-0.78	-0.63	-0.75	-0.60
	H_{2}	-0.75	-	-0.79	-0.75	-0.76	-0.75
	Mg_1	+1.55	-	+1.56	+1.55	+1.59	+1.57
	Mg_2	+1.55	-	+1.55	+1.55	+1.61	+1.58
	$H_{_3}$	-0.76	-	-0.76	-0.75	-0.75	-0.75
First layer	H_4	-0.76	-	-0.79	-0.64	-0.40	-0.61
(MgH ₂)	H₅	-0.76	-	-0.65	-0.51	-0.59	-0.55
	H_6	-0.76	-	-0.36	-0.77	-0.75	-0.75
	Mg_{3}	+1.55	-	+1.51	+1.60	+1.56	+1.55
	Mg_4	+1.55	-	+1.60	+1.53	+1.55	+1.55
	H ₇	-0.75	-	-0.79	-0.75	-0.76	-0.75
	H_8	-0.76	-	-0.50	-0.50	-0.75	-0.55
Second layer (MgH ₂)	Mg ₈	+1.56	-	+1.59	+1.57	+1.57	+1.57
	01	-	-	-0.99	-1.14	-1.14	-1.01
CO2	02	-	-	-1.16	-1.03	-1.15	-1.02
	C1	-	-	+1.22	+1.11	+1.21	+1.06
6	Co ₁	-	-	+0.20	-0.03	+0.43	+0.06
	Co ₂	-	-	-	+0.19	-	+0.10
	H ₁ (1)	-	+0.97	-	-	+1.00	+0.97
	H ₂ (1)	-	+1.03	-	-	+1.01	+1.04
	H ₁ (2)	-	-	-	-	+0.95	+0.94
ц	H ₂ (2)	-	-	-	-	+1.06	+1.08
112	H ₁ (3)	-	-	-	-	+1.06	+1.01
	H ₂ (3)	-	-	-	-	+0.97	+1.01
	H ₁ (4)	-	-	-	-	+0.99	+1.03
	H ₂ (4)	-	-	-	-	+1.02	+1.00

Table S9 Valence Bader charges difference (charge before adsorption – charge after adsorption) for the CO_2 (C_1 , O_1 and O_2) and the surface (first and second MgH₂ layer, $H_1 - H_8$ and $Mg_1 - Mg_8$) atoms after the CO_2 adsorption in configuration P2, P7 and 4 CO_2 .

	Atom	1 CO ₂ P2	1 CO ₂ P7	4 CO ₂		
	Atom	Charge difference				
	H	0.00	0.00	-0.01		
	H ₂	0.00	0.00	-0.01		
	Mg_1	-0.01	+0.01	-0.05		
	Mg_2	0.00	0.00	-0.02		
	H ₃	0.00	-0.01	+0.01		
First layer	H_4	-0.01	0.00	-0.60		
(MgH ₂)	H ₅	-0.01	0.00	-0.02		
	H ₆	0.00	0.00	-0.02		
	Mg_{3}	0.00	-0.02	-0.04		
	Mg_4	-0.01	+0.01	-0.03		
	H ₇	0.00	0.00	0.00		
	H ₈	0.00	+0.01	-0.01		
Second layer (MgH ₂)	Mg_{8}	-0.01	-0.01	-0.01		
	0 ₁ (1)	+0.80	+0.85	+0.85		
	O ₂ (1)	+0.76	+0.79	+0.73		
	C ₁ (1)	-1.51	-1.67	-1.54		
	O ₁ (2)	-	-	+0.90		
	O ₂ (2)	-	-	+1.00		
0	C ₁ (2)	-	-	-1.12		
	O ₁ (3)	-	-	+0.79		
	0 ₂ (3)	-	-	+0.87		
	C ₁ (3)	-	-	-1.63		
	O ₁ (4)	-	-	+0.80		
	O ₂ (4)	-	-	+0.84		
	C ₁ (4)	-	-	-1.61		

Table S10 Valence Bader charges difference (charge before adsorption – charge after adsorption) for the Co (Co₁ - C₉) and the surface (first and second MgH₂ layer, H₁ – H₈ and Mg₁ – Mg₈) atoms after the Co adsorption in configuration C2, 4/4 Co and 7 Co.

	Atom -	1 Co C2	4/4 Co	7 Co			
	Atom	Charge difference					
	H ₁	0.00	-0.33	-0.26			
	H ₂	+0.01	+0.05	+0.01			
	Mg_1	+0.02	+0.02	+0.06			
	Mg_2	-0.01	+0.07	+0.04			
	Η ₃	0.00	-0.23	-0.25			
First layer	H ₄	-0.20	-0.50	-0.41			
(MgH ₂)	H ₅	-0.20	-0.40	-0.47			
	H ₆	0.00	-0.43	-0.28			
	Mg_{3}	-0.01	+0.02	+0.05			
	Mg_4	+0.02	+0.05	0.00			
	H ₇	+0.01	-0.28	0.00			
	H ₈	0.00	-0.22	-0.22			
Second layer (MgH ₂)	Mg ₈	-0.02	+0.02	+0.01			
	Co ₁	+0.32	+0.05	+0.26			
	Co ₂	-	+0.30	+0.04			
	Co ₃	-	+0.21	+0.03			
	Co ₄	-	+0.43	+0.49			
Со	Co ₅	-	+0.37	+0.32			
	Co ₆	-	+0.23	+0.31			
	Co ₇	-	+0.12	+0.24			
	Co ₈	-	+0.20	-			
	Co	-	+0.38	-			

Table S11 Valence Bader charges difference (charge before adsorption – charge after adsorption) for the CO₂ (C₁, O₁ and O₂), the H₂ (H₁ and H₂), the Co (Co₁ – C₉) and the surface (first and second MgH₂ layer, H₁ – H₈ and Mg₁ – Mg₈) atoms after the CO₂ / H₂ adsorption in configuration C3 CO₂ ||, 2 Co CO₂ ||, C2 CO₂ + 4 H₂ and 2 Co CO₂ + 4 H₂.

	Atom	C3 CO ₂	2 Co CO ₂	C2 CO ₂ + 4 H ₂	2 Co CO ₂ + 4 H ₂				
	Atom	Charge difference							
	H ₁	+0.02	-0.13	-0.01	-0.16				
	H ₂	+0.04	-0.01	0.00	-0.01				
	Mg_1	-0.01	0.00	-0.04	-0.03				
	Mg_2	-0.01	0.00	-0.06	-0.03				
	H ₃	0.00	0.00	-0.01	0.00				
First layer	H ₄	+0.04	-0.12	-0.36	-0.15				
(MgH ₂)	H ₅	-0.11	-0.25	-0.17	-0.21				
	H ₆	-0.39	+0.01	0.00	0.00				
	Mg_{3}	+0.04	-0.05	-0.01	0.00				
	Mg_4	-0.06	+0.02	0.00	-0.01				
	H ₇	+0.03	-0.01	0.00	0.00				
	H ₈	-0.26	-0.25	0.00	-0.20				
Second layer (MgH ₂)	Mg_8	-0.03	-0.01	-0.01	-0.01				
	01	+0.77	+0.93	+0.92	+0.79				
CO2	02	+0.94	+0.81	+0.93	+0.79				
	C1	-0.78	-0.67	-0.77	-0.62				
(c	Co ₁	-0.20	+0.03	-0.43	-0.06				
	Co ₂	-	-0.19	-	-0.10				
	H ₁ (1)	-	-	+0.03	0.00				
	H ₂ (1)	-	-	-0.02	+0.02				
	H ₁ (2)	-	-	-0.02	-0.03				
н	H ₂ (2)	-	-	+0.03	+0.05				
112	H ₁ (3)	-	-	+0.09	+0.03				
	H ₂ (3)	-	-	-0.06	-0.02				
	H ₁ (4)	-	-	+0.01	+0.05				
	H ₂ (4)	-	-	-0.01	-0.03				

Table S12: k-points grid convergence set for MgH_2 clean systems. For this test, a 2×2 supercell has been employed.

k-points grid *E_{sys}* (Ry)

4×4×4	-71.9781
5×5×5	-71.9797
6×6×6	-71.9801
8×8×8	-71.9800
12×12×12	-71.9800
16×16×16	-71.9800
20×20×20	-71.9800
24×24×24	-71.9800
28×28×28	-71.9800

Figure S9. Surface energy for MgH2 clean structure as a function of the k-points grid.