Exploration of structure sensitivity of gold nanoparticles in low-temperature CO oxidation

Lei Ying,^{ab} Yu Han,^{ab} Beien Zhu,^{*ac} and Yi Gao^{*acd}

^{a.} Key Laboratory of Interfacial Physics and Technology, Shanghai Institute of Applied Physics,

Chinese Academy of Sciences, Shanghai 201800, China.

^{b.} University of Chinese Academy of Sciences, Beijing 100049, China.

^{c.} Phonon Science Research Center for Carbon Dioxide, Shanghai Advanced Research Institute,

Chinese Academy of Sciences, Shanghai 201210, China.

^{d.} Key Laboratory of Low-Carbon Conversion Science & Engineering, Shanghai Advanced Research Institute, Chinese Academy of Sciences, Shanghai 201210, China

*Corresponding author. Email: gaoyi@sari.ac.cn (Y.G.); zhube@sari.ac.cn (B.Z.).

Keywords: Kinetic Monte Carlo; CO oxidation; Gold catalysis; Nanoparticles

Fig. S1 Adsorption energies versus generalized coordination number for CO (a) and O₂ (b). The scaling of the OCOO adsorption energy (c), activation energy for $[CO^* + O_2^* \rightleftharpoons OCOO^*]$ reaction (d), activation energy for $[OCOO^* \rightarrow CO_2(g) + O^* + *]$ reaction (e) with the sum of the CO and O

adsorption energies. The data are collected from Refs. [1–6].

Fig. S2 TOFs with different diffusion barrier at 273 K with P_{O2}/P_{CO} = 1. Error bars are the

standard deviation of 10 identically simulations.

Fig. S3 Contour plot of TOFs for 5 nm Au NPs with \overline{CN} = 6.7 (a), 7.3 (b), 7.8 (c), and 8.6 (d)

Fig. S4 Coverage of CO and O₂ as a function of temperature at $P_{total} = 1$ bar with $\frac{P_{O_2}}{P_{CO}} = 1$ (a,

d), 10 (b, e), and 100 (c, f) for Au NPs with different \bar{CN}

Fig. S5 site-specific contributions to TOFs and coverages of CO for Au NPs with Stru-6.7 under

 P_{O_2}/P_{CO} = 1 (a, d), 10 (b, e), and 100 (c, f).

Fig. S6 site-specific contributions to TOFs and coverages of CO for Au NPs with Stru-7.8 under

 $P_{O_2}/P_{CO} = 1$ (a, d), 10 (b, e), and 100 (c, f).

Fig. S7 site-specific contributions to TOFs and coverages of CO for Au NPs with Stru-8.6 under

 $P_{O_2}/P_{CO} = 1$ (a, d), 10 (b, e), and 100 (c, f).

Fig. S8 Contour plot of TOFs for Au NPs changing with the temperature and partial pressure

ratio ($P_{total} = 1$ bar) in the size range of 3-10 nm.

	\mathcal{V}_{hkl}	E _{co}	E _{O2}	E _O	E _{ocoo}
Au(100)	0.055	-0.48	-0.02	0.06	-0.76
Au(110)	0.056	-0.55	-0.08	0.03	-0.91
Au(111)	0.043	-0.22	-0.01	0.00	-0.77

Table S1. Surface tension under vacuum (Units in $eV/Å^2$) and adsorption energies (Units in eV)

Table S2. Lateral interaction between A* and B* (Units in eV)^ $\!\alpha$

A*	B*	Au(100)	Au(110)	Au(111)	Average
СО	CO	-0.12	-0.08	-0.08	-0.09
	O ₂	-0.02	-0.02	-0.00	-0.01
	0	-0.12	-0.18	-0.08	-0.13
	OCOO _c	-0.02	0.01	-0.00	-0.00
	OCOO _o	-0.02	0.04	-0.00	0.01
O ₂	O ₂	-0.03	-0.04	-0.03	-0.03
	0	-0.16	-0.26	-0.12	-0.18
	OCOO _c	-0.00	-0.02	0.00	-0.00
	OCOO _o	-0.00	-0.03	-0.19	-0.07
0	0	-0.18	-0.14	-0.21	-0.18
	OCOO _C	-0.06	-0.06	-0.11	-0.08
	OCOO _o	-0.07	-0.05	-0.07	-0.06

 $^{\alpha}$ OCOO_c means the O-C- side of OCOO*, and OCOO_o means O-O- side.

References

- 1 W. An, Y. Pei and X. C. Zeng, CO oxidation catalyzed by single-walled helical gold nanotube, *Nano Lett.*, 2007, **8**, 195–202.
- H. Li, L. Li, A. Pedersen, Y. Gao, N. Khetrapal, H. Jónsson and X. C. Zeng, Magic-number gold nanoclusters with diameters from 1 to 3.5 nm: Relative stability and catalytic activity for CO oxidation, *Nano Lett.*, 2014, **15**, 682–688.
- 3 H. Li and J. Ho, Theoretical calculations on the oxidation of CO on Au55, Ag13Au42, Au13Ag42, and Ag55 clusters of nanometer size, *J. Phys. Chem. C*, 2012, **116**, 13196–13201.
- 4 H. Xu, D. Cheng, Y. Gao and X. C. Zeng, Assessment of catalytic activities of gold nanoclusters with simple structure descriptors, ACS Catal., 2018, 8, 9702–9710.
- 5 J.-X. Liu, I. A. W. Filot, Y. Su, B. Zijlstra and E. J. M. Hensen, Optimum particle size for goldcatalyzed CO oxidation, *J. Phys. Chem. C*, 2018, **122**, 8327–8340.
- J. L. C. Fajín, A. S. Moura and M. N. D. S. Cordeiro, First-principles-based kinetic Monte Carlo simulations of CO oxidation on catalytic Au(110) and Ag(110) surfaces, *Phys. Chem. Chem. Phys.*, 2021, 23, 14037–14050.