Electronic Supplementary Material (ESI) for Journal of Analytical Atomic Spectrometry. This journal is © The Royal Society of Chemistry 2023

Supplementary Material:

Multi-element Signal Enhancement Mechanism Investigation for Laser Ablation Assisted Ultraviolet Laser Excited Atomic Fluorescence

Kaikai KOU^{a,b}, Weiran SONG^{a,b}, Weilun GU^{a,b}, Jiacen LIU^{a,b}, Yuzhou SONG^{a,b}, Jianxun JI^{a,b}, Zongyu HOU^{a,b}, Zhe WANG^{a,b}*

^a State Key Lab of Power Systems, International Joint Laboratory on Low Carbon Clean Energy Innovation, Department of Energy and Power Engineering, Tsinghua University, Beijing, 100084, China ^b Shanxi Research Institute for Clean Energy, Tsinghua University, Taiyuan, 030032, China

^{*}Corresponding author. Zhe WANG: $\underline{zhewang@tsinghua.edu.cn}.$

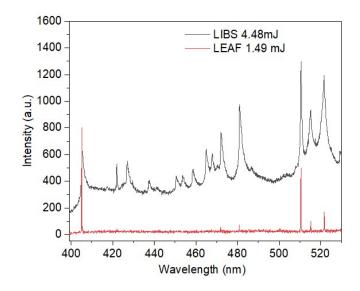


Fig. S1 Original spectra of LIBS and LEAF scheme. E_a = 4.48 mJ in LIBS scheme. E_a = 1.49 mJ, E_e = 0.6 mJ, t_{ip} = 200 ns in LEAF scheme.

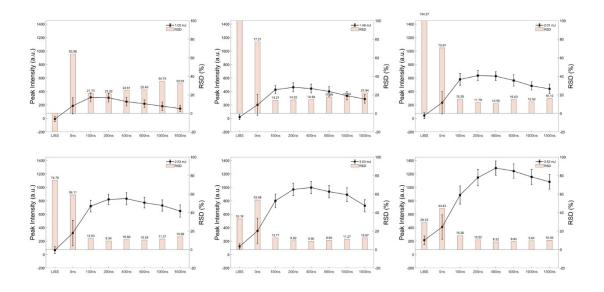


Fig. S2 Effect of ablation laser energy and inter-pulse delay (t_{ip}) on Cu I (510.55 nm) emission intensity and RSD. Laser energy of 193 nm was 0.6 mJ.

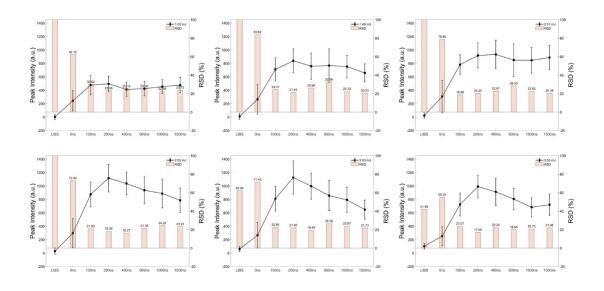


Fig. S3 Effect of ablation laser energy and inter-pulse delay (t_{ip}) on Pb I (405.78 nm) emission intensity and RSD. Laser energy of 193 nm was 0.6 mJ.