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S1 Analytical examples with R codes

Many algorithms for spICP-MS analysis have been reported so far. However, most of their details are 

in a black box and cannot be easily reproduced by anyone other than those involved. In this 

supporting information, we show how the Bayesian estimation processes presented in the main text 

can be simulated numerically and give an example for Ag-NPs with 60-nm diameters as separate zip 

files (‘mixed Poisson signal split model sp-ICP-NS (alpha=0.01, NP=100, blk=1).zip’ and ‘200803 20 

AgNP 60nm 10ppt-1 without data.zip’). The codes included in this paper is available via GitHub 

(https://github.com/Yoshinari-Suzuki/Bayesian-spICP-MS-analysis.git).

As noted in the main text, analytical processes were performed using the statistical 

software R. It is free software and runs on a wide variety of UNIX platforms, Windows, and MacOS. 

Thus, using the code published here, anyone can reproduce the same analytical result, simulate with 

different parameter(s), and import and analyse their own measurement data. This ability is a big 

advantage compared with software that must be purchased. The unzipped folder corresponds to the 

project folder of Rstudio. Rstudio is an integrated development environment for R. It includes a 

console, syntax-highlighting editor that supports direct code execution, as well as tools for plotting, 

history, debugging, and workspace management. The analytical code is described in the Rmd file, 

and the result of a series of analyses is output as an html file. Open the Rroj file, ‘mixed 

Poisson.Rporj’, and then click ‘*.Rmd’ in the ‘Files’ tab (the Files tab is located in the lower right panel 

by default). The Rmd file will be opened in the upper-left panel. All analytical data were saved as 

‘.Rdata’ in the ‘Environment’ tab (the Environment tab is located in the upper-right panel by default), 

(‘.Rdata’ is available for only ‘mixed Poisson signal split model sp-ICP-NS (alpha=0.01, NP=100, 

blk=1).zip’ because of the large file size). To load our analytical results onto R environment, click 

‘.Rdata’ in the ‘Environment’ tab.

To install rstan or cmdstanr, follow the official instructions (https://mc-

stan.org/users/interfaces/rstan for rstan and https://mc-stan.org/cmdstanr/cmdstanr for 

cmdstanr). Install the other R packages if necessary. It seems safer to execute Stan after confirming 

that it works with a simpler model. When the environment is ready, please execute the code in the 

Rmd file. Under our environment [Processor: Intel® Core(TM) i7-8700 CPU @ 3.2GHz; RAM: 16.GB], 

it took about 5 min to estimate the Bayesian model for the simulated data, and it took about 1 h to 

estimate for Ag-NPs with particle sizes of 60 nm. It may be useful to check the flow using a smaller 

amount of data.

https://github.com/Yoshinari-Suzuki/Bayesian-spICP-MS-analysis.git
https://mc-stan.org/users/interfaces/rstan
https://mc-stan.org/users/interfaces/rstan
https://mc-stan.org/cmdstanr/cmdstanr


1. data {
2.   int N;
3.   int<lower=0> Y[N];
4.   real<lower=0> mu_blk;
5.   real<lower=0> sd_blk;
6.   real<lower=0> alpha_int;
7.   real<lower=0> lambda_NP_int;
8.   real<lower=0> lambda_NP_max;
9. }
10.
11. transformed data {
12.   real max_Y;
13.   int C_max;
14.
15.   max_Y = max(Y) - mu_blk;
16.   C_max = max(Y);
17. }
18.
19. parameters {
20.   real<lower=0, upper=1> alpha;
21.   real<lower=0> lambda_blk;
22.   real<lower=0, upper=lambda_NP_max > lambda_NP;
23.   real<lower=0, upper=1> delta_r;
24. }
25.
26. transformed parameters {
27.   real<lower=0.5, upper=1> delta;
28.
29.   delta = 0.25*delta_r*(3-delta_r^2) + 0.5;
30. }
31.
32. model {
33.   delta_r ~ beta(1, 1);
34.   alpha ~ normal(alpha_int, alpha_int/2);
35.   lambda_blk ~ normal(mu_blk, sd_blk);
36.   lambda_NP ~ normal(lambda_NP_int, lambda_NP_int/2);
37.
38.   for (i in 2:N-1) {
39.     vector lp[9];
40.     lp[1] = 3*log1m(theta) + poisson_lpmf( Y[i] | lambda_blk); 
41.     lp[2] = 2*log1m(theta) + log(theta) + poisson_lpmf( Y[i] | lambda_blk + (1-ssf)*lambda_NP );
42.     lp[3] = 2*log1m(theta) + log(theta) + poisson_lpmf( Y[i] | lambda_blk ); 
43.     lp[4] = log(0.5) + log1m(theta) + 2*log(theta) + poisson_lpmf( Y[i] | lambda_blk + (1-ssf)*lambda_NP ); 
44.     lp[5] = log(0.25) + log1m(theta) + 2*log(theta) + poisson_lpmf( Y[i] | lambda_blk + 2*(1-ssf)*lambda_NP );
45.     lp[6] = log(0.25) + log1m(theta) + 2*log(theta) + poisson_lpmf( Y[i] | lambda_blk );
46.     lp[7] = 2*log1m(theta) + log(theta) + poisson_lpmf( Y[i] | lambda_blk + ssf*lambda_NP ); 
47.     lp[8] = log1m(theta) + 2*log(theta) + poisson_lpmf( Y[i] | lambda_blk + ssf*lambda_NP ); 
48.     lp[9] = log1m(theta) + 2*log(theta) + poisson_lpmf( Y[i] | lambda_blk + lambda_NP );  // 
49.     
50.     target += log_sum_exp(lp);
51.   }
52. }
53.
54. generated quantities {
55.   real pmf_blk[C_max + 1];
56.   real pmf_NP[C_max + 1];
57.   real pos_NP[C_max + 1];
58.
59.   for (i in 1:C_max+1) {
60.     vector[6] lp_blk;
61.     vector[3] lp_np;
62.     lp_blk[1] = 3*log1m(theta) + poisson_lpmf( i-1 | lambda_blk);
63.     lp_blk[2] = 2*log1m(theta) + log(theta) + poisson_lpmf( i-1 | lambda_blk + (1-ssf)*lambda_NP);
64.     lp_blk[3] = 2*log1m(theta) + log(theta) + poisson_lpmf( i-1 | lambda_blk);
65.     lp_blk[4] = log(0.5) + log1m(theta) + 2*log(theta) + poisson_lpmf( i-1 | lambda_blk + (1-ssf)*lambda_NP);
66.     lp_blk[5] = log(0.25) + log1m(theta) + 2*log(theta) + poisson_lpmf( i-1 | lambda_blk + 2*(1-ssf)*lambda_NP);
67.     lp_blk[6] = log(0.25) + log1m(theta) + 2*log(theta) + poisson_lpmf( i-1 | lambda_blk );
68.     lp_np[1] = 2*log1m(theta) + log(theta) + poisson_lpmf( i-1 | lambda_blk + ssf * lambda_NP);
69.     lp_np[2] = log1m(theta) + 2*log(theta) + poisson_lpmf( i-1 | lambda_blk + lambda_NP);
70.     lp_np[3] = log1m(theta) + 2*log(theta) + poisson_lpmf( i-1 | lambda_blk + ssf*lambda_NP);
71.     
72.     pmf_blk[i] = exp( log_sum_exp(lp_blk) );
73.     pmf_NP[i]  = exp( log_sum_exp(lp_np) );
74.     if (pmf_blk[i] + pmf_NP[i] == 0) {
75.       pos_NP[i] = 0;
76.     } else {
77.       pos_NP[i] = pmf_NP[i] / (pmf_blk[i] + pmf_NP[i]);
78.     }
79.   }
80. }
81.

Fig. S1 Stan code for estimating parameters from sp-ICPMS data assuming a mixed Poisson 

distribution



S2 Description of the Stan Program

The Stan code, which assumes a mixed Poisson distribution, is shown in Fig. S1. This code contains 6 

blocks (data, transformed data, parameters, transformed parameters, model, and generated 

quantities). Simple explanations for the code are described after the “//” notation in some rows.

In the data block (Fig. S1, lines 1–9), we specified two data dimensions (sample number of 

observed data [N] and value of observed data [Y]) and four values (mu_blk, sd_blk, alpha_int, 

lambda_NP_int, and lambda_NP_max) used in the prior distribution. “mu_blk” and “sd_blk” are the 

mean and standard deviation of the signals of the blank solution, respectively, and “alpha_int” and 

“lambda_NP_int” are the expected mean of alpha and lambda_NP, respectively. Basically, we used 

an “alpha_int” of 0.00067 and “lambda_NP_int” of 200 for 25 ng mL−1 of Ag-NPs with 60-nm 

diameter. In the transformed data block (Fig. S1, lines 11–17), we calculated the maximum value of 

 as a real, integer number. “lambda_NP_max” was used for upper limit for “lambda_NP”.𝑌

In the parameters block (Fig. S1, lines 19–24), we declared four parameters [alpha ( ), 𝛼

lambda_bkg ( ), lambda_NP ( ), and delta_r ( )]. Upper and/or lower limit(s) were set in some 𝜆𝑏𝑘𝑔 𝜆𝑁𝑃 𝛿𝑟

cases. ‘alpha’ is the frequency parameter of the particle event. ‘lambda_bkg’ and ‘lambda_NP’ are 

the expected signal of the background and particle-event intensity, respectively. Let the radius of the 

sphere be 1, and consider it in the coordinate space, as shown in Fig. 2S. When a sphere is cut by one 

plane, ‘delta_r’ ( , ) corresponds to the shortest distance between the plane and the 𝛿𝑅 0 ≤ 𝛿𝑅 ≤ 1

centre of the sphere.

In the transformed parameters block (Fig. S1, lines 26–30), we transformed the ratio of the 

spherical segment volume to spherical volume ( ) from . Let  be a spherical volume 𝛿, 0.5 ≤ 𝛿 ≤ 1 𝛿𝑅 𝑉

with a radius of 1 and  be the spherical segment volume containing the centre of the sphere. Then 𝑉1

 can be described as follows:𝛿

𝛿 =
𝑉1

𝑉
=

1 6𝜋(1 + 𝛿𝑅){3(1 ‒ 𝛿𝑅
2) + (1 + 𝛿𝑅)2}

4 3𝜋
=

1
4

𝛿𝑅(3 ‒ 𝛿𝑅
2) + 0.5. (𝑆1)

In the model block (Fig. S1, lines 32–52), Stan can estimate the declared parameter(s). In 

the Bayesian framework, all parameters follow a probability distribution. The prior distribution(s) 

must therefore be specified. In Stan, when a prior distribution(s) is not specified in the model block, 

a uniform distribution [ ] is automatically applied. In lines 33–36 of Fig. S1, 𝑓𝑝𝑟𝑖(𝜃)~𝑈𝑛𝑖𝑓𝑜𝑟𝑚( ‒ ∞,∞)

the informative prior distributions for all parameters are specified. The prior distributions for ‘alpha’ 

and ‘lambda_NP’ were specified as normal distributions with a mean value of the specified value in 

the data block and a standard deviation of the half-specified value in the data block. The prior 

distribution of ‘delta_r’ was specified as uniform distribution because there was no informative prior 

distribution. A Beta distribution [Beta(1,1)], which is equivalent to the uniform distribution with a 



range of 0–1, is applied. From lines 38– 50 Fig. S1, the values of ‘Y’ are specified as stochastically 

generated from a mixed Poisson distribution with certain parameters that follow the patterns of Fig. 

1. The log-probability for 9 patterns were calculated in the lines 40–48, then the probability of each 

pattern is summed to calculate the logarithmic probability of the entire model in the line 50. Stan 

seeks to find the optimum parameter values from the data. In the generated quantities block (Fig. 

S1, lines 54–80), ‘pos_NP’ [P(k)], ‘pmf_NP’ [PMFNP(k)], and ‘pmf_bkg’ [PMFbkg(k)] were calculated by 

using the estimated parameters.

In the numerical simulation study, the value of  was first generated as a random number 𝛿𝑅

drawn from a uniform distribution with a range of 0–1 [ ], and then  was 𝛿𝑅~𝑈𝑛𝑖𝑓𝑜𝑟𝑚(0,1) 𝛿

calculated according to Eqn. S1. 

Fig. S2 Coordinate space associated with a sphere of radius 1 and a sphere segment. : the shortest 𝛿𝑅

distance between the plane and the centre of the sphere, : the spherical segment volume 𝑉1

containing the centre of the sphere.



Table S1 Prepared concentrations of nanoparticle standards

Nanoparticle Diameter
(nm)

Mass concentration Particle number concentration
(particles mL−1)

Ag 10 0.10 pg mL−1 1.8 × 104

Ag 20 0.75 pg mL−1 1.7 × 104

Ag 20 1.0 pg mL−1 2.3 × 104

Ag 40 5.0 pg mL−1 1.4 × 104

Ag 60 25 pg mL−1 2.1 × 104

SiO2 500 0.50 ng mL−1 6.5 × 103 *
SiO2 500 1.0 ng mL−1 1.3 × 104 *
SiO2 500 1.5 ng mL−1 2.0 × 104 *
SiO2 500 2.0 ng mL−1 2.6 × 104 *
SiO2 500 5.0 ng mL−1 6.5 × 104 *
SiO2 1000 15 ng mL−1 2.5 × 104 *

* The particle number concentrations were calculated based on the nominal particle size of 492 or 

976 nm.

Table S2 Typical operating conditions of ICP-MS
Plasma condition
  Rf power 1550 W
  Plasma gas flow rate 13.8 L min−1

  Auxiliary gas flow rate 0.79 L min−1

  Nebulizer gas flow rate 1.1 L min−1

Sampling depth 5.0 mm
Cell gas no-gas for Ag, H2 gas (5.5 mL min−1) for Si
Data acquisition
  Data point per mass 1
  Integration time 0.5 ms
  Data acquisition time 60 s

S3 Convergence of Markov chain Monte Carlo 

After the Markov chain Monte Carlo (MCMC) iteration had finished, we confirmed the convergence 

of the MCMC for all parameters. Fig. S3 illustrates the result for the simulated data as an example. 

The declared parameters ( , , and ), the transformed parameter ( ), and the sum of the 𝛼 𝜆𝑏𝑘𝑔 𝜆𝑁𝑃 𝛿

log(arithmetic) posterior probabilities (lp__) had converged within 1000 iterations (Figs. S3A and B). 

Moreover, , which is the ratio of inter-chain variance to intra-chain variance, was 1.1 or less. This �̂�

condition is a general criterion of convergence. In addition, the relative effective sample number (

) and the relative Monte Carlo standard deviation (mcse/sd) also satisfied general criteria (0.1 𝑛𝑒𝑓𝑓 𝑁

or more and 0.1 or less, respectively) (Fig. S3C). Actually, one  for pos_NP[107] was less than 𝑛𝑒𝑓𝑓 𝑁

0.1. Because the posterior distribution of pos_NP[107] equalled 1 for 2000 Monte Carlo samples, the 

calculations indicated that the posterior distribution of pos_NP[107] was autocorrelated. These 

results imply that the dissociation of the estimated values among the chains and the influence of 



autocorrelation were small. Although each chain started from different initial values, they all finally 

arrived at a similar value. We conclude that all the calculated values converged.

(A)

(B) Convergence indices for MCMC parameters (iteration=1000, warmup=500, chain=4, thinning=1)

 (C)

Fig. S3 Confirmation of MCMC convergence. (A) Trace plot for declared parameters ( , , and 𝛼 𝜆𝑏𝑘𝑔

), transformed parameter ( ), and some generated quantities (pos_NP) in Stan code (Fig. 1) and 𝜆𝑁𝑃 𝛿

the sum of log posterior probabilities (lp__). (B) Summary of estimation and convergence indices for 

Parameter Mean SD �̂� 𝑛𝑒𝑓𝑓 𝑁 𝑚𝑐𝑠𝑒 𝑠𝑑

𝛼 8.71 × 10−3 0.67 × 10−3 0.9997 0.885 0.024
𝜆𝑏𝑘𝑔 1.01 0.099 1.000 1.015 0.022
𝜆𝑁𝑃 103 1.7 0.9994 0.845 0.024
𝛿 0.804 0.006 0.9993 0.807 0.025

lp__ −1.463 × 103 4.75 × 10−2 0.9999 0.438 0.034



parameters and lp__. (C) Histograms of three convergence indices ( , , and ) for all �̂� 𝑛𝑒𝑓𝑓 𝑁 𝑚𝑐𝑠𝑒 𝑠𝑑

calculated values, where  is the ratio of intra-chain variation to inter-chain variance,  is the �̂� 𝑛𝑒𝑓𝑓 𝑁

ratio of effective sample number to MCMC sample, and  is the ratio of Monte Carlo standard 𝑚𝑐𝑠𝑒 𝑠𝑑

error to standard deviation. If calculated data are not distributed in the light blue area, it can be 
concluded that MCMC calculations have converged.

S4 Point estimator of posterior distribution

When we want to estimate an unknown population parameter  on the basis of observations , we 𝜃 𝑌

can calculate the posterior distribution of  [ ] using Bayes’ theorem:𝜃 𝑓𝑝𝑜𝑠𝑡(𝜃│𝑌)

𝑓𝑝𝑜𝑠𝑡(𝜃│𝑌) =
𝐿(𝑌│𝜃)𝑓𝑝𝑟𝑖(𝜃)

𝑓𝑜𝑏𝑠(𝑌)
,(𝑆2)

where  is a likelihood function,  is a prior distribution, and  is a distribution of 𝐿(𝑌│𝜃) 𝑓𝑝𝑟𝑖(𝜃) 𝑓𝑜𝑏𝑠(𝑌)

observations . In the Bayesian framework, estimated results are obtained as distributions. The 𝑌

three-point estimators for posterior distributions are known: expected a posteriori (EAP), median of 

posterior distribution (MED), and maximum a posteriori (MAP). 

Using the mean squared error (MSE) as risk, where MSE is defined by , the point 𝐸[(�̂� ‒ 𝜃)2]
estimate of the certain unknown parameter is simply the EAP. If the “linear” loss function (LLF) is 

used as the risk, where LLF is defined by  with , the point estimate of the certain 𝑎|�̂� ‒ 𝜃| 𝑎 > 0

unknown parameter is simply the MED. The MAP is closely related to the method of maximum 

likelihood estimation (MLE), but it employs an augmented optimization objective that incorporates 

a prior distribution. MAP estimation can therefore be seen as a regularization of MLE. The method 

of MAP estimates the mode of the posterior distribution of this random variable:

�̂�𝑀𝐴𝑃 = 𝑎𝑟𝑔max
𝜃

𝑓𝑝𝑜𝑠𝑡(𝜃│𝑌). (𝑆3)

Although the EAP of the skewed posterior distribution is different from MED and MAP, EAP 

is the most widely used and validated estimator. 

S5 Confidence Interval and Credible Interval

A credible interval (CrI) is an important concept in Bayesian statistics to describe and summarize 

uncertainty. In this regard, CrI is quite similar to the frequentist “confidence Intervals (CI)”. However, 

whereas their goals are similar, their statistical meanings are different.

● 95% CI: with a large number of repeated samples, 95% CI represents 95% frequency (i.e., 95% 

proportion) of possible confidence intervals that contain the true estimate of the unknown 

parameter.



● 95% CrI: given the observed data, there is a 95% probability that the true estimate of an unknown 

parameter would lie within the 95% CrI.
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Fig. S4 Analytical example for simulation study under the condition of signal-to-background ratio of 10. (A) 

Simulated time-resolved data assuming spICP-MS. (B) Posterior distributions for , , , and . �̂� �̂�𝑏𝑘𝑔 �̂�𝑁𝑃 �̂�

Horizontal red lines indicate the true values. (C) Histogram of particle-event height, which corresponds to 

the green points in panel A. (D) Histogram of ion signal for all readings and probability of being NP (red 

line). (E) Histogram of restored particle-event height. Symbols are explained in the list of symbols and 

throughout the text.

S6 Simulation study under the following condition: =0.01, =10 and =1𝛼 𝜆𝑁𝑃 𝜆𝑏𝑘𝑔

Figure S4(A) shows the simulated counts for the time-resolved analysis obtained by spICP-MS, and 

Fig. S4(B) shows the estimated ion signal obtained with the BE method for those data. The true values 

were distributed within the 95%CrI of the posterior distributions for all parameters.



(A) (B) (C)Ag-NP 60 nm SiO2-NP 500 nm SiO2-NP 1000 nm

Fig. S5 Boxplots and histograms of particle-event duration
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Fig. S6 Relationships between estimated diameter and nominal diameter of Ag-NP with diameters of 

20–60 nm using Bayesian estimation (left) and conventional criteria method (right)

S7 Analytical example of 1000-nm SiO2 nanoparticles

Figure S6 shows the analytical example for SiO2-NPs with 1000-nm diameters with a DT of 0.5 ms. 

The both mean  (952 nm) and  (979 nm) show good agreements with the nominal diameter �̂�𝐶𝐶
𝑁𝑃 �̂�𝐵𝐸

𝑁𝑃

(976 ± 30 nm). Moreover, the both  (2.3 × 104 particles mL−1) and  (2.5 × 104 particles mL−1) �̂�𝐶𝐶
𝑃𝑁 �̂�𝐵𝐸

𝑃𝑁

distributed within the uncertainly of the prepared concentration [(2.3–2.8) × 104 particles mL−1) 



derived from the uncertainty of the nominal diameter by the manufacture.

In the case of large particles with a high melting point, there is a concern that accurate 

particle mass calculation may not be possible due to incomplete vaporization in the plasma. In this 

study, reasonable particle size estimation results are obtained for SiO2-NPs with 1000-nm diameter. 

This result indicates that the influence of incomplete vaporization can be ignored under current 

condition.
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Fig. S7 Analytical example of spICP-MS for SiO2-NP with 1000-nm diameter. (A) Time-resolved 

analysis. (B) Time-resolved analysis for shaded region in panel A. (C) Histogram of particle-event 

intensity using conventional criteria method. (D) Histogram of particle diameter using conventional 

criteria method. (E) Posterior distributions of parameters of mixed Poisson distribution. (F) Posterior 

distributions of particle number concentration and (G) particle diameter. Vertical dashed line 

indicates prepared (F) or nominal value (G). Symbols are explained in the list of symbols and 

throughout the text.



Fig. S8 Examples of Bayesian estimation for spICP-MS data of Ag-NPs with 20-nm diameters plus 

dissolved Ag ions at a concentration of 0.1 µg L−1 using different prior distributions. (A) Time resolved 

analysis data. Red dashed lines indicate criterion of NP signal defined as mean plus 3 , and yellow 𝜎

triangles indicate transient signals, which appear to be derived from NP but are lower than the 

criterion value. (B) Bayesian estimation results using the weak informative prior distribution. (C) 

Bayesian estimation results using the specific informative prior distribution.

+3σ

(A)

~ beta(1, 1);
~ normal(0.01, 0.005);

~ normal(mu_bkg, sd_bkg);
~ normal(Y_max/4, Y_max /8);
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~ normal(mu_bkg, sd_bkg);
~ normal(22, 0.4);
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Table S3 The prior distributions used in the simulation study for various signal-to-background ratiosa,b

Background 
parameter 𝛼 𝜆𝑏𝑙𝑘 𝜆𝑁𝑃 𝛿𝑅

0.3 N(0.01, 0.01) N(0.3, 0.5) N(30,30) Beta(300, 300)
1 N(0.01, 0.01) N(1, 1) N(30,30) Beta(300, 300)
3 N(0.01, 0.01) N(3, 1.7) N(30,30) Beta(300, 300)

10 N(0.01, 0.01) N(10, 3.2) N(30,30) Beta(300, 300)
30 N(0.01, 0.01/10) N(30, 5.5) N(30,30/10) Beta(300, 300)

a:  denotes the normal distribution with mean  and standard deviation .𝑁(𝜇,𝜎) 𝜇 𝜎

b:  denotes the beta distribution with  and , when  is the 𝐵𝑒𝑡𝑎(𝑎,𝑏) 𝑎 𝑏
𝑌1 ‒ 𝑎(1 ‒ 𝑌)1 ‒ 𝑏

𝐵(𝑎,𝑏)

probability density function of beta distribution. Note that,  means beta function𝐵(𝑥,𝑦)

S8 The prior distributions used in the simulation study for various signal-to-background ratios

The weak informative prior distributions were adopted for , , and  under the S/B ratio of 𝛼 𝜆𝑏𝑙𝑘 𝜆𝑁𝑃

more than 3. On the other hand, the specific informative prior distributions were adopted under 

the S/B of 1. For  parameter, the specific informative prior distributions, intended to be almost 𝛿𝑅

constant to the expected value of 0.5, were adopted for all S/B ratio cases.
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Fig. S9 Analytical results of particle-event frequency (A) and mean particle-event intensity (B) for 

simulation study under the various signal-to-background ratios: , , and 𝛼 = 0.01 𝜆𝑏𝑙𝑘 = (0.3, 1, 3,10,30)

. The error bars in each panel indicate the standard deviation of the triplicated analysis. 𝜆𝑁𝑃 = 30

Horizontal red dashed line indicates true values.


