Sensitive and accurate determination of REEs by highlyefficiency miniaturized ultrasonic nebulization sampling system coupled with inductively coupled plasma mass spectrometry

Junhang Dong,^{1,2,#} Meihua Chen^{3,#}, Lujie Li,^{1,2} Pengju Xing,¹ Shuyang Li,¹ Zhe

Zhang,¹ Jingwen Zhang,¹ Jinzhao Liu,² Xing Liu,¹ Wenkai Zhang^{1,2}, Huan Tian,² Hongtao Zheng² and Zhenli Zhu,^{1,2,4*}.

¹ State Key Laboratory of Biogeology and Environmental Geology, School of Earth Sciences, China University of Geosciences, Wuhan 430074, China

² Faculty of Material Science and Chemistry, China University of Geosciences, Wuhan 430074, China

³ Changsha Natural Resources Comprehensive Survey Center, Changsha 410000, China

⁴ Hubei Key Laboratory of Yangtze Catchment Environmental Aquatic Science, Wuhan, 430078, China

Correspondence and requests for materials should be addressed to:

Dr. Zhenli Zhu, State Key Laboratory of Biogeology and Environmental Geology, China University of Geosciences, Wuhan 430074, China, Email: zlzhu@cug.edu.cn

Table of Contents

Section 1 The setup of the MUN unit.

Section 2 High-pressure bomb sample digestion process.

Figure S-1 The linear fit equations of the normalized signal intensities of REEs using MUN-ICP-MS with the nebulization rate increasing from 10 to 45 μ L min⁻¹.

Figure S-2 (a) Normalized signal-to-noise ratios of 16 REEs and η with different nebulization rate of MUN under the optimal conditions obtained by auto-tune, respectively. (b) Optimization of Ar carrier gas flow rate with the MUN nebulization rate of 30 μ L min⁻¹.

Figure S-3 The calibration curve of REEs in MUN-ICP-MS with the low REEs concentrations ranging from 0.03 to 0.30 ng mL⁻¹ and high REEs concentrations ranging from 1 to 20 ng mL⁻¹.

Figure S-4 The reproducibility of REEs signal intensities measured at the concentration of (a) 1 ng mL⁻¹ and (b) 10 ng mL⁻¹ by MUN-ICP-MS (N = 8).

Figure S-5 The comparison of the Gd measured values of GSD-10, GSS-7, GSS-9, GSS-12, BCR-2, and BHVO-2 using the MUN-ICP-MS by choosing the ¹⁵⁷Gd without any correction and the ¹⁶⁰Gd with the mathematical correction.

Table S-1 Instrumental operating conditions and data acquisition parameters for PN-ICP-MS and MUN-ICP-MS.

Table S-2 Analysis and rinsing process settings for MUN-ICP-MS.

Table S-3 Comparison of sample introduction efficiency (η) with different MUN nebulization rate.

Table S-4 The voltage of square waveform of MUN selected at different duty ratios.

Table S-5 Measurement results (N = 3) of REEs mass fractions in two sediments (GSD-10, GSS-9) and two soils (GSS-7, GSS-12) CRMs using the MUN-ICP-MS.

Table S-6 Measurement results (N = 3) of REEs mass fractions in two basalt CRMs (BCR-2 and BHVO-2) using the MUN-ICP-MS.

Reference.

Section 1. The setup of the MUN unit.

The MUN sheet is connected with the spray chamber by using an O-ring (i.d. 10 mm, o.d. 16 mm) with super glue (3M). A peristaltic pump that comes with the ICP-MS instrument provides the introduction of sample solution with a pump tube (i.d. 0.25 mm). The front end of the pump tube is connected with a PFA capillary (i.d. 0.1 mm), and the rear end is connected to a quartz capillary (i.d. 30 μ m), which is kept horizontal and the outlet of the quartz capillary located above the central area of the MUN with a very short interval of about 0.1 mm. The capillary was positioned horizontally, which forms an angle of 90° to the surface of the MUN. Under operation, liquid was allowed to flow onto the central area of transducer, where nebulization occurred.

Section 2. High-pressure bomb sample digestion process.

For the four sediments and soils CRMs standard samples, 100 mg of samples powder were precisely weighed into a PTFE-lined stainless-steel bomb, and then 1.0 mL concentrated HNO₃ and 1.0 mL HF were slowly added. Digestion blank was also set for digestion process. After that, the bombs were sealed and heated to 190°C in an electric oven for 48 hours to ensure complete digestion. After cooling, the bombs were opened and placed on a hotplate to evaporate the sample solutions at 100°C. Then, 1 mL concentration HNO₃ was added and evaporated to dryness at 100°C in order to remove HF. After that, 3 mL 30% HNO₃ was added, and the bombs were opened and heated in an oven at 190°C for 12 hours. After cooling, the bombs were opened and the solutions were transferred to PFA beakers. These beakers were placed on a hotplate at 100°C to evaporate the sample solutions. Then, 0.5 mL DI-water was added and evaporated to dryness at 100°C again in order to remove HNO₃ completely and redissolved in 8 mL 2% HNO₃.

Figure S-1. The linear fit equations of the normalized signal intensities of REEs using MUN-ICP-MS with the nebulization rate increasing from 10 to 45 μ L min⁻¹. The signal intensities of REEs are independently normalized by maximum value. Each point is the average from six measurements (n = 6) with the error bars defined as ± SD.

Figure S-2. (a) Normalized signal-to-noise ratios of 16 REEs with different nebulization rate of MUN under the optimal conditions obtained by auto-tune, respectively. (b) Optimization of Ar carrier gas flow rate with the MUN nebulization rate of 30 μ L min⁻¹. Square waveform with duty ratio of 50% was set for MUN. (Signal-to-noise ratios of REEs are independently normalized by maximum value, each point is the average from six measurements (n = 6) with the error bars defined as ± SD)

Figure S-3 Calibration curve of REEs in MUN-ICP-MS with the low REEs concentrations ranging from 0.03 to 0.30 ng mL⁻¹ and high REEs concentrations ranging from 1 to 20 ng mL⁻¹. Each point is the average from 3 measurements (n = 3) with the error bars defined as \pm SD.

Figure S-4 The reproducibility of REEs signal intensities measured at the concentration of (a) 1 ng mL⁻¹ and (b) 10 ng mL⁻¹ by MUN-ICP-MS (N = 8). (Each point is the average intensity within a single analysis time and the error bars are defined as the internal precision of a single analysis)

Figure S-5 The comparison of the Gd measured values of GSD-10, GSS-7, GSS-9, GSS-12, BCR-2, and BHVO-2 using the MUN-ICP-MS by choosing the ¹⁵⁷Gd without any correction and the ¹⁶⁰Gd with the mathematical correction (Mc (160) = M (160) * 1 - M (163) * 0.09357). Each point is the average from 3 measurements (n = 3) with the error bars defined as ± SD.

Parameter	PN-ICP-MS	MUN-ICP-MS				
Plasma power (W)	1550					
Plasma gas (L min ⁻¹)	15.0	15.0				
Auxiliary gas (L min ⁻¹)	0.9					
Sampling depth (mm)	8.0					
Interface cones	Nicke	1				
Extract 1 (V)	20.0					
Extract 2 (V)	-90					
Omega Bias (V)	-90					
Omega Lens (V)	8.0					
Cell Entrance (V)	-30					
Cell Exit (V)	-50					
Deflect (V)	15.4					
Plate Bias (V)	-35					
II. flow note (mI min ⁻¹)	CRC activated: 2					
He now rate (mL mm ⁻)	CRC inactivated: 0					
Octp Bias (V)	-8.0					
Octp RF (V)	200					
Energy Discrimination (V)	5.0					
Monitored isotopes	⁸⁹ Y, ¹³⁹ La, ¹⁴⁰ Ce, ¹⁴¹ Pr, ¹⁴⁶ Nd, ¹⁴⁷ Sm, ¹⁵³ Eu, ¹⁵⁷ Gd,					
Monitored isotopes	¹⁵⁹ Tb, ¹⁶³ Dy, ¹⁶⁵ Ho, ¹⁶⁶ Er, ¹⁶⁹ Tm, ¹⁷² Yb, ¹⁷⁵ Lu					
Signal processing	Signal processing3 points per peak					
Sweep	100					
Integration time (s)	0.1					
Replicates	3					
Nebulizer	MicroMist (340 µL min ⁻¹)	MUN (30 μ L min ⁻¹)				
Carrier Gas (L min ⁻¹)	1.10 1.15					
Analysis time (s)	30 30					

Table S-1 Instrumental operating conditions and data acquisition parameters for PN-ICP-MS and MUN-ICP-MS.

Step	Operation settings	Time (s)			
1	MUN: stop; Sample solution uptake: 60 μ L min ⁻¹ (Sample	2			
1	solution)	Z			
2	MUN: 0.11 W (30 μ L min ⁻¹); Sample solution uptake: 30 μ L	30			
Z	min ⁻¹ (Sample solution)				
3	MUN: 0.11 W (30 μ L min ⁻¹); Sample solution uptake: stop	8			
1	MUN: 0.11 W (30 μ L min ⁻¹); Sample solution uptake: 30 μ L	15			
4	min ⁻¹ (UPW)	15			
5	MUN: 0.11 W (30 μ L min ⁻¹); Sample solution uptake: Stop	2			

Table S-2. Analysis and rinsing process settings for MUN-ICP-MS.

Nebulization rate of MUN (μL min ⁻¹)	MUN powe r (W)	Running time (min)	Feed (g)	Chambe r weight before sampling (g)	Chambe r weight after sampling (g)	Wast e (g)	η
10	0.05	30	0.321	13.228	13.228	/	100%
10	0.05	60	0.629	13.228	13.228	/	100%
20	0.08	30	0.624	13.228	13.228	/	100%
20	0.08	60	1.298	13.228	13.228	/	100%
20	0.11	30	0.925	13.228	13.228	/	100%
30	0.11	60	1.782	13.228	13.228	/	100%
15	0.15	5	0.233	13.228	13.299	0.024	89.7%
43	0.15	5	0.231	13.228	13.293	0.022	90.3%
65	0.22	5	0.330	13.228	13.397	0.070	78.9%
03	0.22	5	0.337	13.228	13.399	0.064	81.1%

Table S-3. Comparison of sample introduction efficiency (η) with different MUN nebulization rate.

Duty ratio/%	voltage/V
20	15.2
30	14.0
40	12.6
50	12.4
60	12.0
80	11.8

Table S-4 The voltage of square waveform of MUN selected at different duty ratios.

		CSD-10 (ug g ⁻¹)			CSS-7 (µg g ⁻¹)			CSS-9 (ug g ⁻¹)		GSS-12 (µg g ⁻¹)	
Element	03D-10 (µg g)			G55-7 (µg g)		G35-9 (µg g -)		G55-12 (µg g -)			
	Measured*	Certified ^{#1}	Recommended ^{&1}	Measured*	Certified [#]	Recommended ^{&1}	Measured*	Recommended ^{&2}	Measured*	Recommended ^{&3}	
Sc	3.92 ± 0.07	3.22 ± 0.14	4.1 ± 0.4	26.93 ± 0.24	26.5 ± 0.1	28.0 ± 2.0	12.21 ± 0.22	12 ± 2	12.49 ± 0.37	12.6 ± 0.4	
Y	13.64 ± 0.11	13.4 ± 0.5	14.0 ± 2.0	28.16 ± 0.04	28.8 ± 0.8	27.0 ± 4.0	25.74 ± 0.13	25.0 ± 2.0	26.87 ± 0.16	26.4 ± 0.9	
La	12.23 ± 0.13	12.1 ± 0.3	13.0 ± 0.9	45.14 ± 0.19	46.1 ± 0.9	46.0 ± 5.0	38.87 ± 0.23	38.0 ± 3.0	30.01 ± 0.23	29.0 ± 2.0	
Ce	37.13 ± 0.33	37.4 ± 0.6	38 ± 4.0	105.69 ± 0.57	104.0 ± 1.0	98.0 ± 11.0	73.71 ± 0.38	74.0 ± 4.0	56.66 ± 0.20	57.0 ± 2.0	
Pr	2.897 ± 0.050	2.91 ± 0.09	3.2 ± 0.4	10.94 ± 0.21	11.4 ± 0.2	11.0 ± 1.0	8.333 ± 0.095	8.5 ± 0.7	6.881 ± 0.048	7.0 ± 0.4	
Nd	10.98 ± 0.24	10.8 ± 0.3	11.8 ± 1.1	43.77 ± 0.26	44.8 ± 1.0	45.0 ± 2.0	32.07 ± 0.31	32.0 ± 3.0	27.17 ± 0.36	27.9 ± 1.2	
Sm	2.348 ± 0.026	2.33 ± 0.01	2.4 ± 0.2	9.847 ± 0.182	10.3 ± 0.1	10.3 ± 0.4	$\boldsymbol{6.224 \pm 0.159}$	6.2 ± 0.5	5.770 ± 0.136	5.6 ± 0.4	
Eu	0.4544 ± 0.0069	0.45 ± 0.02	0.47 ± 0.04	3.453 ± 0.043	3.41 ± 0.04	3.40 ± 0.20	1.273 ± 0.008	1.27 ± 0.11	1.245 ± 0.018	1.22 ± 0.04	
Gd	2.252 ± 0.036	2.17 ± 0.09	2.2 ± 0.2	9.697 ± 0.145	9.25 ± 0.12	9.6 ± 0.9	5.732 ± 0.098	5.4 ± 0.6	5.250 ± 0.022	5.1 ± 0.3	
Tb	0.3589 ± 0.0024	0.36 ± 0.01	0.42 ± 0.1	1.310 ± 0.037	1.35 ± 0.01	1.30 ± 0.20	0.8756 ± 0.0077	0.86 ± 0.12	0.8504 ± 0.0188	0.84 ± 0.06	
Dy	2.198 ± 0.042	2.18 ± 0.12	2.2 ± 0.3	6.581 ± 0.037	$\boldsymbol{6.37 \pm 0.21}$	6.6 ± 0.6	4.754 ± 0.101	4.7 ± 0.4	$4.927{\pm}\ 0.033$	4.9 ± 0.3	
Ho	0.4469 ± 0.0046	0.45 ± 0.01	0.45 ± 0.07	1.151 ± 0.018	1.11 ± 0.03	1.10 ± 0.20	1.021 ± 0.005	1.03 ± 0.07	1.015 ± 0.010	1.01 ± 0.04	
Er	1.279 ± 0.032	1.29 ± 0.09	1.3 ± 0.2	2.852 ± 0.073	2.57 ± 0.10	2.7 ± 0.5	2.881 ± 0.023	2.8 ± 0.3	2.971 ± 0.050	2.9 ± 0.2	
Tm	0.1883 ± 0.0040	0.19 ± 0.01	0.20 ± 0.03	0.3941 ± 0.0091	0.38 ± 0.02	0.42 ± 0.05	0.435 ± 0.007	0.42 ± 0.06	0.4577 ± 0.0089	0.44 ± 0.05	
Yb	1.198 ± 0.027	1.21 ± 0.07	1.2 ± 0.2	2.343 ± 0.026	2.22 ± 0.04	2.4 ± 0.4	2.570 ± 0.014	2.6 ± 0.4	3.022 ± 0.046	2.9 ± 0.2	
Lu	0.1755 ± 0.0033	0.18 ± 0.01	0.19 ± 0.03	0.3435 ± 0.0098	0.32 ± 0.01	0.35 ± 0.06	0.416 ± 0.009	0.41 ± 0.03	0.4489 ± 0.0043	0.46 ± 0.02	

Table S-5 Measured results (N = 3) of REEs mass fractions in two sediments (GSD-10, GSS-9) and two soils (GSS-7, GSS-12) CRMs using the MUN-ICP-MS. The measured values are the average from 3 measurements (n = 3) by MUN-ICP-MS with the uncertainties error bars defined as

*this work

 \pm SD.

[#]Certified values reported by Liang and Gregoire.¹

^{&1}Recommend values reported by Govindaraju.²

^{&2}Recommend values reported by Wang et. al.³

^{&3}Recommend values reported by Gu et. al.⁴

Table S-6 Measured results (N = 3) of REEs mass fractions in two basalt CRMs (BCR-2 and BHVO-2) using the MUN-ICP-MS. The measured values are the average from 3 measurements (n = 3) by MUN-ICP-MS with the uncertainties error bars defined as \pm SD.

Flomont	BCR-2	(μg g ⁻¹)	BHVO-2 (μg g ⁻¹)			
Liement	Measured*	Certified [#]	Measured*	Certified [#]		
Sc	33.79 ± 0.34	33.53 ± 0.4	32.32 ± 0.17	31.83 ± 0.34		
Y	35.87 ± 0.24	36.07 ± 0.37	25.75 ± 0.33	25.91 ± 0.28		
La	25.32 ± 0.39	25.08 ± 0.16	15.43 ± 0.16	15.2 ± 0.08		
Ce	53.49 ± 0.27	53.12 ± 0.33	37.55 ± 0.14	37.53 ± 0.19		
Pr	6.764 ± 0.041	6.827 ± 0.044	5.360 ± 0.077	5.339 ± 0.028		
Nd	28.84 ± 0.48	28.26 ± 0.37	24.34 ± 0.28	24.27 ± 0.25		
Sm	6.540 ± 0.121	6.547 ± 0.047	6.045 ± 0.058	6.032 ± 0.057		
Eu	2.036 ± 0.030	1.989 ± 0.024	2.077 ± 0.020	2.043 ± 0.012		
Gd	6.732 ± 0.040	6.811 ± 0.078	6.375 ± 0.024	$\boldsymbol{6.207 \pm 0.038}$		
Tb	1.070 ± 0.025	1.077 ± 0.026	0.9378 ± 0.0069	0.9392 ± 0.006		
Dy	6.404 ± 0.047	6.424 ± 0.055	5.313 ± 0.025	5.280 ± 0.028		
Но	1.329 ± 0.029	1.313 ± 0.011	0.9818 ± 0.0086	0.9887 ± 0.0053		
Er	3.636 ± 0.018	3.670 ± 0.038	2.550 ± 0.036	2.511 ± 0.014		
Tm	0.5396 ± 0.0073	0.5341 ± 0.006	0.3378 ± 0.0059	0.3349 ± 0.0031		
Yb	3.3619 ± 0.0289	3.392 ± 0.036	1.987 ± 0.007	1.994 ± 0.027		
Lu	0.5115 ± 0.0042	0.5049 ± 0.0078	0.2702 ± 0.0026	0.2754 ± 0.0024		

*this work

[#]Certified values reported by Jochum et. al.⁵

References

- Q. Liang and D. C. Gregoire, Determination of trace elements in twenty six Chinese geochemistry reference materials by inductively coupled plasma-mass spectrometry, *Geostand. Geoanal. Res.*, 2000, 24, 51-63.
- K. Govindaraju, 1994 compilation of working values and sample description for 383 geostandards, *Geostand. Geoanal. Res.*, 1994, 18, 1-158.
- C. S. Wang, T. X. Gu, Q. H. Chi, W. D. Yan and M. C. Yan, New series of rock and sediment geochemical reference materials, *Geostand. Geoanal. Res.*, 2001, 25, 145-152.
- T. X. Gu, W. D. Yan, C. Y. Shi, M. C. Yan and W. Bo, New series of soil geochemical reference materials (GSS 10-16) from the main overburden region in China, *Geostand. Geoanal. Res.*, 2003, 27, 197-202.
- K. P. Jochum, U. Weis, B. Schwager, B. Stoll, S. A. Wilson, G. H. Haug, M. O. Andreae and J. Enzweiler, Reference values following ISO guidelines for frequently requested rock reference materials, *Geostand. Geoanal. Res.*, 2016, 40, 333-350.