Electronic Supplementary Material (ESI) for Journal of Analytical Atomic Spectrometry. This journal is © The Royal Society of Chemistry 2023

# **Supporting Information**

<sup>90</sup>Sr bioassay in small-volume urine by ICP-MS/MS with CO<sub>2</sub> as the reaction gas

# Guosheng Yang<sup>a,\*</sup>, Hirofumi Tazoe<sup>b</sup>, Eunjoo Kim<sup>a</sup>, Jian Zheng<sup>a</sup>, Munehiko Kowatari<sup>a</sup>, Osamu Kurihara<sup>a</sup>

<sup>a</sup> National Institutes for Quantum Science and Technology (QST), 4-9-1 Anagawa, Inage, Chiba 263-8555, Japan

<sup>b</sup> Institute of Radiation Emergency Medicine, Hirosaki University, 036-8564, Aomori,

Japan

\*Corresponding author. E-mail address: yang.guosheng@qst.go.jp

#### **PROCORAD** inter-comparison

Each year around 30 laboratories, including ours at QST, Japan, participate in the inter-comparison exercises for <sup>90</sup>Sr in urine offered by PROCORAD (Association for the PROmotion of Quality COntrol in RADiotoxicological Analysis).

For the PROCORAD intercomparison campaign 2020, three urine samples spiked with or without <sup>90</sup>Sr (20 SRA, 20 SRB, and 20 SRC) were sent to our laboratory. For the PROCORAD intercomparison campaign 2023, three urine samples spiked with or without <sup>90</sup>Sr (23 SRA, 23 SRB, and 23 SRC) were sent to our laboratory. For each sample, a total of approximately 70 L of urine was collected from each healthy human volunteer who was not subject to any risk of radioactive contamination.

After confirming that there was no detectable <sup>90</sup>Sr in the collected urine, the urine (ca. 500 mL) was fractionated in flasks and each flask was spiked individually with certified source prior to sending the samples to participating PROCORAD laboratories.

### Chemical and chromatographic purification for beta counting analysis

As shown in Fig. S1, 500 mL urine was transferred into glass beaker and 50 mL concentrated HNO<sub>3</sub> was added. Sample bottle was rinsed three times with 5 mL concentrated HNO<sub>3</sub>. After heating the mixture to dryness at 140 °C, 5 mL concentrated HNO<sub>3</sub> and 2 mL of 30% H<sub>2</sub>O<sub>2</sub> were added, and this mixture was heated to dryness at 140 °C to decompose organic matter. This step was repeated 4 times to obtain totally white residue. Subsequently, the final residue was re-dissolved into 20 mL concentrated HNO<sub>3</sub> by heating at 120 °C for 30 min with watch glass. After that, the solution was filtrated with 0.45 µm pore PTFE membrane filter. The glass beaker was rinsed with ultrapure water and the solution was also filtrated. Finally, solution volume of 100 mL was obtain the secular equilibrium of <sup>90</sup>Sr - <sup>90</sup>Y. After that, 4 mL solution was taken out from the 100 mL HNO<sub>3</sub> solution mentioned above, and 1 mL of 1 mg/mL stable Y standard solution was added as carrier. Then, 2 mL concentrated HNO<sub>3</sub> was added for loading on 1 mL DGA resin cartridge. The resin cartridge was rinsed with 10 mL 8 M HNO<sub>3</sub> with a flow rate of 2 mL min<sup>-1</sup>, then with 10 mL 8 M HCl to remove Bi, 20 mL

3 M HNO<sub>3</sub> and 0.3 M HF to remove U and Th, 20 mL 0.02 M HNO<sub>3</sub> to remove La, Ce and other light rare earth elements. Finally, Y was eluted with 20 mL 0.1 M HCl. A 100  $\mu$ L of the Y fraction was taken out and diluted to 10 mL with 2% HNO<sub>3</sub> for analysis by inductively coupled plasma-optical emission spectrometry (SPECTRO BLUE, SCP SCIENCE, Quebec, Canada) to obtain the recovery. For the residual solution, 1 mg Fe carrier purified from FeCl<sub>3</sub>·H<sub>2</sub>O (reagent-grade, Wako Chemical, Japan) was added and the precipitation was performed with addition of 0.3 mL aqueous NH<sub>4</sub>OH. After filtrating the precipitation on a mixed cellulose esters membrane and drying the precipitation with infrared lamp, the precipitation was placed onto an acrylic holder and wrapped with PE film. Finally, the activity of <sup>90</sup>Y was analyzed with the beta counting of the low background 2  $\pi$  gas flow proportional counter for 60 h.

**Table S1** The daily <sup>90</sup>Sr content in urine associated with the specified committed effective dose (1 mSv) and the required limits of detection based on the assumption of a daily excretion of 1.6 L for an adult male, using 10 mL urine for analysis, and the final analytical solution volume of 1 mL for ICP-MS analysis.

|                 | aUrina | ry excretion | (Bq/d) | Conc  | entration (          | Bq/L) | Detectio | n required                | (Bq/mL) |  |
|-----------------|--------|--------------|--------|-------|----------------------|-------|----------|---------------------------|---------|--|
| Inhalation type | Day 1  | Day 2        | Day 3  | Day 1 | Day 2                | Day 3 | Day 1    | Day 2                     | Day 3   |  |
| Fast            | 1800   | 870          | 540    | 1125  | 544                  | 338   | 11.3     | 5.44                      | 3.38    |  |
| Moderate        | 400    | 240          | 150    | 250   | 150                  | 93.8  | 2.50     | 1.50                      | 0.938   |  |
| Slow            | 1.9    | 1.1          | 0.69   | 1.19  | 0.69                 | 0.43  | 0.012    | 0.007                     | 0.004   |  |
| Ingestion       | 1600   | 670          | 430    | 1000  | 419                  | 269   | 10.0     | 4.19                      | 2.69    |  |
|                 | Urina  | ry excretion | (pg/d) | Cone  | Concentration (pg/L) |       |          | Detection required (ng/L) |         |  |
|                 | Day 1  | Day 2        | Day 3  | Day 1 | Day 2                | Day 3 | Day 1    | Day 2                     | Day 3   |  |
| Fast            | 352    | 170          | 106    | 220   | 106                  | 66    | 2.20     | 1.06                      | 0.66    |  |
| Moderate        | 78.2   | 46.9         | 29.3   | 48.9  | 29.3                 | 18.3  | 0.489    | 0.293                     | 0.183   |  |
| Slow            | 0.372  | 0.215        | 0.135  | 0.232 | 0.134                | 0.084 | 0.00232  | 0.00134                   | 0.00084 |  |
| Ingestion       | 313    | 131          | 84.1   | 196   | 81.9                 | 52.6  | 1.96     | 0.819                     | 0.526   |  |

<sup>a</sup> The <sup>90</sup>Sr excretion content in urine is calculated from OIR Data Viewer software.

| Interfering<br>element | Interference                                    | Abundance of former isotope | Abundance of<br>latter isotope | <b>Required</b><br>resolution | Median  | Geometric<br>mean | 95th<br>percentile |       | Amount<br>in 10 mL<br>urine |
|------------------------|-------------------------------------------------|-----------------------------|--------------------------------|-------------------------------|---------|-------------------|--------------------|-------|-----------------------------|
|                        |                                                 | %                           | %                              |                               | ng/mL   | ng/mL             | ng/mL              | ng/mL | ng                          |
| Ti                     | $^{50}Ti^{40}Ar^{\scriptscriptstyle +}$         | 5.18                        | 99.6                           | 1.60×10 <sup>5</sup>          | 5.14    |                   | 12.19              |       | 122                         |
| V                      | $^{50}V^{40}Ar^{+}$                             | 0.25                        | 99.6                           | 4.98×10 <sup>4</sup>          | 1.58    |                   | 3.79               |       | 37.9                        |
| Cr                     | $^{50}{\rm Cr}^{40}{\rm Ar}^{+}$                | 4.345                       | 99.6                           | 1.30×10 <sup>5</sup>          | 0.35    |                   | 0.79               |       | 7.9                         |
|                        | $^{52}{\rm Cr}^{38}{\rm Ar}^{+}$                | 83.79                       | 0.06                           | 2.00×10 <sup>4</sup>          |         |                   |                    |       |                             |
|                        | $^{54}\mathrm{Cr}^{36}\mathrm{Ar}^{\mathrm{+}}$ | 2.365                       | 0.34                           | 6.85×10 <sup>4</sup>          |         |                   |                    |       |                             |
| Mn                     | $^{55}Mn^{35}Cl^+$                              | 100                         | 75.76                          | 1.07×10 <sup>5</sup>          |         |                   | 0.46               |       | 4.6                         |
| Fe                     | $^{54}\mathrm{Fe}^{36}\mathrm{Ar}^{\mathrm{+}}$ | 5.85                        | 0.34                           | 1.54×10 <sup>5</sup>          |         |                   |                    | 24    | 240                         |
| Ni                     | $^{58}Ni^{16}O_2{}^+$                           | 68.08                       | 99.76                          | 5.16×10 <sup>3</sup>          | 1.99    |                   | 6.35               |       | 63.5                        |
| Ge                     | <sup>72</sup> Ge <sup>18</sup> O <sup>+</sup>   | 27.31                       | 0.2                            | 6.66×10 <sup>3</sup>          | 0.65    |                   | 2.62               |       | 26.2                        |
|                        | $^{74}{\rm Ge^{16}O^{+}}$                       | 36.72                       | 99.76                          | $1.08 \times 10^{4}$          |         |                   |                    |       |                             |
|                        | $^{76}Ge^{14}N^+$                               | 7.83                        | 99.64                          | 5.37×10 <sup>3</sup>          |         |                   |                    |       |                             |
| Se                     | $^{74}Se^{16}O^+$                               | 0.89                        | 99.76                          | 9.31×10 <sup>3</sup>          | 13.4    |                   | 33.39              |       | 334                         |
|                        | $^{76}Se^{14}N^+$                               | 9.37                        | 99.64                          | 6.18×10 <sup>3</sup>          |         |                   |                    |       |                             |
|                        | $^{78}{Se^{12}C^{+}}$                           | 23.77                       | 98.93                          | 9.39×10 <sup>3</sup>          |         |                   |                    |       |                             |
| Y                      | $^{89}Y^1H^+$                                   | 100                         | 99.99                          | 1.51×10 <sup>4</sup>          | < 0.059 |                   |                    |       |                             |
| Zr                     | $^{90}{ m Zr^{+}}$                              | 51.45                       |                                | 2.96×10 <sup>4</sup>          | <0.945  |                   |                    |       |                             |
| Sr                     |                                                 |                             |                                |                               |         | 144               | 506                |       | 5060                        |
| Major element          |                                                 |                             |                                |                               | μg/mL   | μg/mL             | μg/mL              |       | mg                          |
| Na                     |                                                 |                             |                                |                               | 2104    | 1928              | 5078               |       | 50.8                        |
| Mg                     |                                                 |                             |                                |                               | 71      | 57                | 191                |       | 1.91                        |

Table S2 Potential polyatomic/isobaric interferences and major matrix elements for <sup>90</sup>Sr analysis in urine by ICP-MS/MS.

| K  | 2569 | 2244 | 6780 | 67.8 |
|----|------|------|------|------|
| Ca | 76   | 76   | 309  | 3.09 |

All the data are cited from Morton et al., 2014,<sup>1</sup> except for the data of Fe from Nakagawa et al., 2004<sup>2</sup> and Sr from Usuda et al., 2006.<sup>3</sup>

| Instrumental settings                         |                                                                       |
|-----------------------------------------------|-----------------------------------------------------------------------|
| Sample cone                                   | S type                                                                |
| Skimmer cone                                  | S type                                                                |
| Nebulizer                                     | Conical concentric                                                    |
| RF power                                      | 1550 W                                                                |
| RF matching                                   | 1.20 V                                                                |
| Sampling position                             | 8.0 mm                                                                |
| Carrier gas                                   | 0.90 L/min                                                            |
| Makeup gas                                    | 0.14 L/min                                                            |
| Nebulizer pump                                | 0.1 rps                                                               |
| Extraction lens 1                             | 4.2 V                                                                 |
| Extraction lens 2                             | -240.0 V                                                              |
| Omega bias                                    | -110 V                                                                |
| Omega lens                                    | 10.0 V                                                                |
| Q1 entrance                                   | 0 V                                                                   |
| Q1 exit                                       | 2.0 V                                                                 |
| Cell focus                                    | 3.0 V                                                                 |
| Cell entrance                                 | -70 V                                                                 |
| Cell exit                                     | -120 V                                                                |
| Deflection                                    | 5.0 V                                                                 |
| Plate bias                                    | -80 V                                                                 |
| Data acquisition settings                     |                                                                       |
| Q2 peak pattern                               | 6 points                                                              |
| Replicates                                    | 5                                                                     |
| Sweep/Replicates                              | 300                                                                   |
| Scan mode                                     | MS/MS                                                                 |
| Gas flow rate in 4# cell gas line             | 75%                                                                   |
| Integration time, $m/z$ (Q1 $\rightarrow$ Q2) | $90 \rightarrow 90, 6.00 \text{ s}; 88 \rightarrow 88, 0.3 \text{ s}$ |
| Sample time                                   | 53 s                                                                  |
|                                               |                                                                       |
| APEX-Q settings                               |                                                                       |
| Sample uptake rate                            | 0.2 mL/min                                                            |
| Spray chamber temperature                     | 140°C                                                                 |
| Condenser temperature                         | 2°C                                                                   |
| Sweep gas (Ar)                                | 3 L/min                                                               |
| Additional gas (Ar)                           | 0.1 L/min                                                             |
| N <sub>2</sub> gas                            | 8–10 mL/min                                                           |

Table S3 Instrumental and data acquisition settings for ICP-MS/MS (Agilent 8900 ICP-QQQ)

| •                      | -         |                                            |  |  |  |
|------------------------|-----------|--------------------------------------------|--|--|--|
| Introduction<br>system | Lens type | Signal intensity<br>(×10 <sup>4</sup> cps) |  |  |  |
| С                      | Х         | 9.6                                        |  |  |  |
| Α                      | Х         | 22.3                                       |  |  |  |
| Α                      | S         | 88.0                                       |  |  |  |

**Table S4** The signal intensities at m/z 90-90 (Q1-Q2) for 1 ng/mL Zr during ICP-MS/MS analysis without addition of collision/reaction gas.

A: APEX-Q/ACM desolvation sample introduction system. C: conventional (quartz Scott double

pass spray chamber) sample introduction system

| Introduction<br>system | Lens | Gas            | Flow rate<br>(%) | 88-88<br>(cps)        | 90-90<br>(cps) | Abundance              | MDL<br>(pg/mL)        |
|------------------------|------|----------------|------------------|-----------------------|----------------|------------------------|-----------------------|
| С                      | Х    | O <sub>2</sub> | 70               | 1.60×10 <sup>9</sup>  | 0.185          | 1.16×10 <sup>-10</sup> | 6.77×10 <sup>-4</sup> |
| С                      | S    | $O_2$          | 90               | 2.65×10 <sup>9</sup>  | 1.11           | 4.19×10 <sup>-10</sup> | 2.65×10-4             |
| А                      | S    | O <sub>2</sub> | 100              | $1.07 \times 10^{10}$ | 0.808          | 7.52×10 <sup>-11</sup> | 8.43×10 <sup>-5</sup> |
| С                      | Х    | $\rm CO_2$     | 65               | 1.34×10 <sup>9</sup>  | 1.67           | 1.24×10-9              | 8.78×10 <sup>-4</sup> |
| С                      | S    | $CO_2$         | 75               | 2.12×10 <sup>9</sup>  | 1.33           | 6.27×10 <sup>-10</sup> | 9.78×10 <sup>-4</sup> |
| А                      | S    | $CO_2$         | 95               | 5.49×10 <sup>9</sup>  | 4.29           | 7.83×10 <sup>-10</sup> | 4.56×10-4             |

**Table S5** The abundance sensitivity and method detection limit (MDL) calculated from signal intensities at m/z 88-88 and 90-90 with 10  $\mu$ g/mL Sr. The gas was introduced via the 4<sup>#</sup> cell gas line.

A: APEX-Q/ACM desolvation sample introduction system. C: conventional (quartz Scott double pass spray chamber) sample introduction system

**Table S6** The value comparison of measured and spiked <sup>90</sup>Sr in urine after ICP-MS/MS analysis.

| <sup>90</sup> Sr spiked (pg) | <sup>90</sup> Sr measured (pg) |  |  |
|------------------------------|--------------------------------|--|--|
| 10 mL                        |                                |  |  |
| 0.0218±0.0003                | 0.0225±0.0026                  |  |  |
| 0.218±0.003                  | $0.202 \pm 0.015$              |  |  |
| 21.8±0.3                     | 21.4±1.7                       |  |  |
| 400 mL                       |                                |  |  |
| 0.0218±0.0003                | 0.0213±0.0023                  |  |  |
| 0.218±0.003                  | 0.222±0.019                    |  |  |
| 21.8±0.3                     | 21.9±0.9                       |  |  |

Expanded uncertainty (k=2), n=3, Decay corrected to the measured day.

**Table S7** Concentrations (Bq/L) of <sup>90</sup>Sr in urine samples measured by the beta counting (n=3) and ICP-MS/MS methods (n=2) in the 2020 and 2023 PROCORAD program (Reference date: March 15 of the participation year).

| Sample | Beta counting | ICP-MS/MS | Assigned value |
|--------|---------------|-----------|----------------|
| 20 SRA | 2.56±0.21     | 2.68±0.45 | 2.72±0.13      |
| 20 SRB | -             | -         | -              |
| 20 SRC | 5.40±0.18     | 5.56±0.38 | 5.64±0.27      |
| 23 SRA | -             | -         | -              |
| 23 SRB | 2.81±0.03     | 3.30±0.51 | 2.79±0.16      |
| 23 SRC | 5.43±0.23     | 5.42±0.31 | 4.94±0.23      |

-: < method detection limit.



Fig. S1 Schematic diagram of determination of <sup>90</sup>Sr in urine sample by beta counting.



**Fig. S2** The elution profiles of Sr on 2 mL DGA resin column (resin 1) and 2 mL Sr resin (resin 2). DF: decontamination factor = the amount prior to purification / the amount after purification.



Fig. S3 Mass spectra illustrating produced ions with reaction between A) Sr and  $O_2$ ; B) Zr and  $O_2$ ; C) Sr and  $CO_2$ ; D) Zr and  $CO_2$ . The collision/reaction gases were introduced via the 4<sup>#</sup> cell gas line.



Fig. S4 The responses of 1 ng/mL Sr and Zr with the increasement of  $O_2$  flow rate in the 4<sup>#</sup> cell gas line in on-mass mode, with the application of conventional sample introduction system+x lens (A), conventional sample introduction system+s lens (B), APEX-Q/ACM sample introduction system+s lens (C). The blue data indicated the gap between signal intensities of Sr and Zr.



Fig. S5 The responses of 1 ng/mL Sr and Zr with the increasement of  $O_2$  flow rate in the 4<sup>#</sup> cell gas line in mass shift modes (M<sup>+</sup> $\rightarrow$ MO<sup>+</sup>: left side, M<sup>+</sup> $\rightarrow$ MO<sub>2</sub><sup>+</sup>: right side), with the application of conventional sample introduction system+x lens (upper), conventional sample introduction system+s lens (middle), APEX-Q/ACM sample introduction system+s type lens (bottom).



Fig. S6 The signal intensities at m/z 90-90 (Q1-Q2) using 10 µg/mL Sr and 10 ng/mL other interfering elements with the optimal O<sub>2</sub> flow rate in the 4<sup>#</sup> cell gas line in onmass mode (M<sup>+</sup> $\rightarrow$ M<sup>+</sup>), with the application of conventional sample introduction system+x type lens (A), conventional sample introduction system+s type lens (B), APEX-Q/ACM sample introduction system+s type lens (C).



Fig. S7 The responses of 1 ng/mL Sr and Zr with the increasement of CO<sub>2</sub> flow rate in the 4<sup>#</sup> cell gas line in mass-shift modes (M<sup>+</sup> $\rightarrow$ MO<sup>+</sup>: left side, M<sup>+</sup> $\rightarrow$ MO<sub>2</sub><sup>+</sup>: right side), with the application of conventional sample introduction system+x lens (upper), conventional sample introduction system+s lens (middle), APEX-Q/ACM sample introduction system+s lens (bottom).



Fig. S8 The signal intensities at m/z 90-90 (Q1-Q2) using 10 µg/mL Sr and 10 ng/mL other interfering elements with the optimal CO<sub>2</sub> flow rate in the 4<sup>#</sup> cell gas line in onmass mode (M<sup>+</sup> $\rightarrow$ M<sup>+</sup>), with the application of conventional sample introduction system+x lens (A), conventional sample introduction system+s lens (B), APEX-Q/ACM sample introduction system+s lens (C). OK indicated that the signal intensity of Zr was mitigated effectively within the background signal intensity of the 4 % HNO<sub>3</sub> solution.



Fig. S9 The variation of signal intensities at m/z 88-88 (Q1-Q2) with variation of the axial acceleration in the collision/reaction cell, using 1 ng/mL Sr with 30% CO<sub>2</sub> flow rate in the 4<sup>#</sup> cell gas line in on-mass mode (M<sup>+</sup> $\rightarrow$ M<sup>+</sup>), with the application of conventional sample introduction system+s lens.



Fig. S10 The variation of signal intensities at m/z 88-88 (Q1-Q2) with variation of the kinetic energy discrimination (KED) in the collision/reaction cell, using 1 ng/mL Sr with 30% CO<sub>2</sub> flow rate in the 4<sup>#</sup> cell gas line in on-mass mode (M<sup>+</sup> $\rightarrow$ M<sup>+</sup>), with the application of conventional sample introduction system+s lens.



**Fig. S11** The variation of signal intensities at m/z 88-88 (Q1-Q2) with variation of the Octp RF in the collision/reaction cell, using 1 ng/mL Sr with 30% CO<sub>2</sub> flow rate in the  $4^{\#}$  cell gas line in on-mass mode (M<sup>+</sup> $\rightarrow$ M<sup>+</sup>), with the application of conventional sample introduction system + s lens.



**Fig. S12** The variation of signal intensities at m/z 88-88 (Q1-Q2) with variation of the Octp bias in the collision/reaction cell, using 1 ng/mL Sr with 30% CO<sub>2</sub> flow rate in the  $4^{\#}$  cell gas line in on-mass mode (M<sup>+</sup> $\rightarrow$ M<sup>+</sup>), with the application of conventional sample introduction system + s lens.

## References

- J. Morton, E. Tan, E. Leese and J. Cocker, Determination of 61 elements in urine samples collected from a non-occupationally exposed UK adult population, *Toxicol. Lett.* 2014, 231, 179–193.
- J. Nakagawa, Y. Tsuchiya, Y. Yashima, M. Tezuka and Y. Fujimoto, Determination of trace levels of elements in urine by inductively coupled plasma mass spectrometry, *J. Health Sci.* 2004, **50**, 164–168.
- K. Usuda, K. Kono, T. Dote, M. Watanabe, H. Shimizu, Y. Tanimoto and E. Yamadori, An overview of boron, lithium, and strontium in human health and profiles of these elements in urine of Japanese, *Environ. Health Prev. Med.* 2007, 12, 231–237.