Electronic Supplementary Information

Wear metals determination in lubricating oils by reversedphase dispersive liquid-liquid microextraction and microwave induced plasma optical emission spectrometry

Carmen Sáez^a, Dimitar Stoitsov^b, Miguel Ángel Aguirre^c, Veselin Kmetov^{†b}, Clara Coscollà^d and Antonio Canals^c

^aPublic Health Laboratory of Alicante, 6 Plaza de España, Alicante, 03010, Spain.
^bDepartment of Analytical Chemistry and Computer Chemistry, University of Plovdiv Paisii Hilendarski, 24 Tzar Assen Str., Plovdiv, 4000, Bulgaria.
^cDepartment of Analytical Chemistry and Food Science, University Institute of Materials, Faculty of Science, University of Alicante, P.O. Box 99, 03080, Alicante, Spain.
^dFoundation for the Promotion of Health and Biomedical Research in the Valencian Region, FISABIO-Public Health, 21, Avenida Catalunya, Valencia, 46020, Spain.

† Deceased.

*Corresponding authors: aguirre.pastor@ua.es (M.A. Aguirre) and a.canals@ua.es (A. Canals)

Figure S1. Photograph of part of the sample introduction system for the introduction of low volume of aqueous extract.

Figure S2. Pareto charts of the Plackett-Burman design obtained for: (a) Cr;(b) Cu; (c) Mn; (d) Mo and (e) Ni.

Figure S3. Response surface and contour plots from circumscribed central composite design for Cu.

Figure S4. Response surface and contour plots from circumscribed central composite design for Ni.

Figure S5. Response surface and contour plots from circumscribed central composite design for Mo.

Figure S6. Response surface and contour plots from circumscribed central composite design for Mn.

Figure S7. Response surface and contour plots from circumscribed central composite design for Cr.

Experimental factor	Low level (-1)	High level (+1)
A: Sample weight (g)	3	7
B: Type of extraction phase	HNO ₃	HCl
C: Concentration of extractant (M)	0	3
D: Volume of extractant (µL)	60	100
E: Vortex agitation time (min)	1	3
F: Centrifugation time (min)	1	3
G: Centrifugation speed (rpm)	2000	3000

Table S1. Factors and levels of the Plackett-Burman design.

Table S2. Screening study matrix of the Plackett-Burman design.

Experiment	А	В	С	D	E	F	G
1	7	HCl	0	100	3	3	2000
2	3	HCl	3	60	3	3	3000
3	7	HNO_3	3	100	1	3	3000
4	3	HCl	0	100	3	1	3000
5	3	HNO_3	3	60	3	3	2000
6	3	HNO_3	0	100	1	3	3000
7	7	HNO_3	0	60	3	1	3000
8	7	HCl	0	60	1	3	2000
9	7	HCl	3	60	1	1	3000
10	3	HCl	3	100	1	1	2000
11	7	HNO_3	3	100	3	1	2000
12	3	HNO_3	0	60	1	1	2000

Table S3. Factors and levels of the CCCD.

				Star po	oints
		Level		(α=1,4	14)
	Low	Central	High	-α	+α
Factors	(-1)	(0)	(+1)		
Sample weight (g)	4,0	5,0	6,0	3,6	6,4
Extractant volume (µl)	66	80	94	60	100

Experiment	Sample weight (g)	Extractant volume (µL)
1	4.0	66
2	6.0	66
3	4.0	94
4	6.0	94
5	3.6	80
6	6.4	80
7	5.0	60
8	5.0	100
9	5.0	80
10	5.0	80
11	5.0	80
12	5.0	80

Table S4. Optimization study matrix of the CCCD.

Table S5. Optimal values for Cu, Ni, Mo, Mn and Cr.

Analyte	Sample weight (g)	Extractant volume (µL)
Cr	5,8	60
Cu	5,6	60
Mn	6,2	60
Mo	5,8	60
Ni	5,7	60

	Penalty Points (PP)
	Amount PP x Hazard PP
Reagents (Chemical Hazard)	
Hydrochloric Acid (37%)	4
Petroleum ether as solvent:	8
Conostan S-21:	1
Instruments (energy consumed by equipment)	
Vortex stirring (3min)	0
Centrifugation (3 min)	0
MIP OES analysis	1
	8

Table S6. Penalty points (PP) calculated to assess the greenness of the proposed method for Cr, Cu, Mn, Mo, and Ni determination in lubricating oils.