Supporting Information

A study on a natural pyrite sample as a potential reference material for simultaneous measurement of sulfur and iron isotopes using fs-

LA-MC-ICP-MSs

Lie-Wen Xie^{1,*}, Xiao-Jun Wang², Hui-Min Yu³, Jian-Feng Gao⁴, Lei Xu¹, Chao Huang¹, Guo-Qiang Tang¹, Qian Mao¹, Lian-Jun Hong¹, Yue-Heng Yang¹, Shi-Tou Wu¹, Hao Wang¹

¹ State Key Laboratory of Lithospheric Evolution, Institute of Geology and Geophysics, Chinese Academy of Sciences, P. O. Box 9825, Beijing 100029, P. R. China.
² State Key Laboratory of Continental Dynamics, Department of Geology, Northwest University, Xi'an 710069, P. R. China.
³ CAS Key Laboratory of Crust-Mantle Materials and Environments, School of Earth and Space Sciences, University of Science and Technology of China, Hefei, China.
⁴ State Key Laboratory of Ore Deposit Geochemistry, Institute of Geochemistry,

Chinese Academy of Sciences, Guiyang, Guizhou, China

* Corresponding author

Email: xieliewen@mail.iggcas.ac.cn

Tel: +86-010-82998162, Fax: +86-010-62010846

Submitted to Journal of Analytical Atomic Spectrometry

Faraday Cup Configurations for Fe isotopes on Neptune Plus and S isotopes on Neptune								
L4 L	3 L2	L1	С	H1	H2	H3	H4	
53	Cr	⁵⁴ Fe	⁵⁶ Fe	⁵⁷ Fe		⁵⁸ Fe	⁶⁰ Ni	
		^{32}S	³³ S	³⁴ S				
Neptune / Nep	tune Plus MC-1	CP-MS	NW	RFemto Laser	Ablation Sys	tem		
RF power	1200 W		Wa	welength	257 nm			
Plasma gas	16 L/min (Ar)	Pul	se duration	$70\sim90\ fs$			
Auxiliary gas	0.9 L/min (A	r)	Ene	ergy density	Approxima	te 0.1 J/cm ²	at energy	
					output of 5	% for Fe and	S isotope	
					ratio analys	sis		
Sample depth	About -0.6 \sim	-1.2 mm	Bea	am size	$25\sim 30~\mu m$	n and 40 μ m	for Fe and S	
Interface cone	s Sample cone:	standard cone			isotope rati	o analysis, re	espectively,	
	Skimmer con	e: X cone			and 60 µm	for simultane	eous	
					measureme	ents of Fe-S is	sotopes	
Make up gas	About 0.80 ~	1.3 L/min (Ar)	Pul	se repeat rate	$3 \sim 8 \text{ Hz}$ at	nd 10 ~ 15 Hz	z for Fe and S	
Resolution	High resoluti	on mode			isotope rati	o analysis, re	espectively	
	(m/∆m ~800)0-9000)			and 20 Hz	for simultane	eous	
					measureme	ents of Fe-S is	sotopes	
Integration	A single anal	ysis consists of	a block Cai	rrier gas (He)	About 700	mL/min for l	Fe and S	
	of 60 cycles v	with an integrati	on time		isotope rati	o analysis an	d about 900	
	of 0.262 s per	cycle for Fe an	d S		mL/min for	r simultaneou	15	
	isotope ratio	analysis			measureme	ents of Fe-S is	sotopes	

Table S1 Summary of the instrument parameters

Smot No.	Crain No.	Element concentration (wt%)								
Spot No.	Grain No.	Fe	S	Co	Ni	Cu	Zn	As	Pb	Total
1	IGGPy G01	46.2	52.1	1.47	0.03	-	0.03	-	0.09	99.9
2	IGGPy G02	46.0	51.7	1.46	-	-	0.03	-	0.06	99.3
3	IGGPy G03	46.3	52.0	1.47	0.03	-	-	-	0.10	99.9
4	IGGPy G04	46.1	51.9	1.48	-	-	-	-	0.09	99.6
5	IGGPy G05	46.2	52.2	1.48	-	-	-	-	0.07	99.9
6	IGGPy G06	46.2	52.3	1.45	-	0.03	-	0.05	0.07	100.1
7	IGGPy G07	46.3	52.6	1.48	-	-	-	0.03	-	100.4
8	IGGPy G08	46.2	51.9	1.48	-	-	-	-	0.09	99.8
9	IGGPy G09	46.5	52.1	1.49	-	-	-	0.03	0.07	100.2
10	IGGPy G10	46.4	52.0	1.48	-	-	-	-	0.11	100.0
11	IGGPy G11	46.3	52.0	1.47	0.02	-	-	-	0.07	99.9
12	IGGPy G12	46.3	51.5	1.47	-	-	-	-	0.06	99.3
	average	46.3	52.0	1.47					0.07	99.9
	1S	0.1	0.3	0.01					0.02	0.3
13	IGGPy G13	46.0	51.7	1.49	-	-	-	0.03	0.10	99.3
14		46.0	51.7	1.48	0.02	-	-	-	0.03	99.3
15		46.2	52.0	1.47	-	-	-	-	0.10	99.7
16		46.1	51.7	1.49	0.02	-	-	-	0.09	99.4
17		46.2	51.8	1.45	-	-	0.03	-	0.11	99.6
18		46.0	51.9	1.49	-	-	-	0.02	-	99.5
19		46.1	51.9	1.47	0.02	-	-	-	0.08	99.5
20		46.2	51.7	1.46	-	-	-	-	0.13	99.6
21		46.1	51.8	1.45	0.03	-	-	0.02	0.12	99.5
22		46.1	51.6	1.48	-	-	-	0.02	0.08	99.3
23		46.3	51.9	1.48	-	-	-	-	0.01	99.7
24		45.9	51.5	1.47	-	-	-	0.03	0.09	99.1
25		46.3	51.8	1.48	-	-	-	0.02	0.07	99.7
26		46.1	51.6	1.44	-	0.03	-	0.02	0.08	99.3
27		46.1	51.5	1.46	-	-	-	0.03	0.08	99.2
28		46.2	51.5	1.47	-	-	-	0.03	0.07	99.3
29		46.0	51.6	1.46	0.04	-	-	-	0.10	99.2
30		46.3	51.7	1.47	-	-	-	-	0.07	99.6
31		46.2	51.6	1.44	-	-	-	0.02	0.07	99.4
32		46.0	51.9	1.44	0.03	0.02	-	-	0.04	99.5
33		46.1	51.8	1.47	-	0.03	-	0.03	0.10	99.5
34		46.1	51.9	1.47	0.02	-	-	0.03	-	99.6
35		46.2	51.7	1.46	-	-	-	0.05	0.07	99.5
36		46.0	51.8	1.47	-	-	0.03	0.02	0.06	99.5
37		46.2	51.8	1.47	-	-	-	0.02	-	99.5

Table S2 Element concentrations (wt%) of IGGPy-1 by EPMA

14010 52	eonninaea									
38		46.2	52.0	1.48	0.02	-	-	-	-	99.8
39		46.1	52.0	1.48	-	-	-	-	0.05	99.7
40		46.1	52.0	1.46	-	-	-	-	0.07	99.7
41		45.9	51.9	1.45	-	-	-	-	0.11	99.4
42		46.2	51.8	1.48	-	-	-	0.02	0.06	99.6
43		46.1	51.9	1.46	-	-	-	-	0.08	99.5
44		46.2	52.0	1.48	0.02	-	0.03	-	0.05	99.8
45		46.2	52.1	1.47	-	-	-	-	0.05	99.9
46		46.0	52.0	1.48	0.02	-	-	0.03	0.07	99.6
47		46.2	51.9	1.49	-	0.04	-	0.02	0.09	99.8
48		46.1	51.7	1.48	0.02	0.02	-	0.03	-	99.4
49		46.1	52.0	1.45	_	-	-	0.04	0.07	99.7
50		46.0	51.8	1.46	_	-	-	-	0.10	99.3
51		46.3	52.2	1.45	0.03	-	-	0.02	0.09	100.0
52		46.1	51.9	1.46	-	-	0.05	0.02	_	99.6
53		46.0	51.8	1.45	-	-	-	-	0.06	99.3
54		46.3	52.0	1.46	_	0.02	_	-	0.05	99.8
55		46.0	51.9	1.46	0.02	_	_	0.02	0.10	99.5
56		46.5	52.1	1.48	_	-	_	0.03	0.10	100.2
57		46.0	52.1	1.45	_	-	_	0.02	0.04	99.6
58		46.2	52.0	1.46	0.03	0.02	-	_	0.04	99.8
59		46.2	52.0	1.47	0.02	_	-	0.03	0.08	99.8
60		46.1	52.2	1.46	_	0.02	_	_	0.09	99.9
61		46.2	52.0	1.46	_	_	_	0.02	0.05	99.7
62		46.2	52.3	1.46	_	-	_	_	0.04	100.0
0-	average	46.1	51.9	1.47					0.07	99.6
	18	0.1	0.2	0.01					0.03	0.2
	15	011	0.2	0101					0100	0.2
63	IGGPy G14	46.3	52.0	1.47	-	-	-	-	0.09	99.8
64		46.2	51.9	1.45	-	-	-	-	0.11	99.7
65		46.3	52.0	1.46	-	-	-	-	0.14	99.9
66		46.1	51.9	1.48	-	-	-	-	0.07	99.6
67		46.3	52.2	1.48	-	-	-	0.03	0.05	100.1
68		46.0	52.1	1.45	-	-	-	-	0.08	99.7
69		46.2	51.9	1.47	-	-	-	-	0.05	99.5
70		46.2	52.0	1.46	0.02	-	-	-	0.09	99.7
71		46.0	52.1	1.46	-	-	-	0.02	0.05	99.7
72		46.3	52.3	1.45	-	-	-	_	0.06	100.1
73		46.2	52.1	1.47	-	-	-	_	_	99.8
74		46.3	52.1	1.46	_	-	-	0.02	0.05	99.9
75		46 5	52.1	1.47	-	0.03	-	0.03	0.06	100.2
15		10.0	-							

Table S2 continued

	continued									
77		46.1	52.1	1.47	0.02	-	-	0.02	0.04	99.8
78		46.2	51.9	1.46	-	-	-	0.02	0.09	99.7
79		46.4	52.3	1.47	-	-	-	0.03	0.05	100.2
80		45.9	52.0	1.47	-	-	-	-	0.07	99.5
81		46.3	52.1	1.48	0.02	-	-	0.04	0.07	100.0
82		46.3	52.1	1.46	-	-	0.05	-	0.08	100.0
83		46.1	52.0	1.47	-	-	-	-	0.05	99.7
84		46.1	52.1	1.48	-	-	-	0.02	0.05	99.8
85		46.2	52.2	1.46	-	-	-	-	-	99.8
86		46.2	52.0	1.48	-	-	-	0.02	0.05	99.8
87		46.0	51.9	1.46	-	-	-	0.05	0.07	99.5
88		46.4	52.0	1.48	0.02	-	-	0.03	0.12	100.0
89		46.4	52.3	1.48	-	-	-	0.02	0.05	100.2
90		46.2	52.3	1.48	-	-	-	-	0.07	100.1
91		46.1	52.0	1.46	0.02	-	0.03	-	0.07	99.8
92		46.3	52.0	1.47	-	-	-	-	0.10	99.9
93		46.1	52.2	1.47	-	0.02	-	0.04	0.06	99.9
94		46.3	52.2	1.46	-	-	-	0.02	0.05	100.0
95		46.2	52.1	1.46	-	-	-	0.03	0.07	99.9
96		46.2	52.1	1.44	-	-	-	-	0.09	99.8
97		46.3	52.1	1.47	0.02	-	-	-	0.09	100.0
98		45.9	52.1	1.46	-	-	-	-	0.06	99.6
99		46.0	52.1	1.47	-	0.02	-	-	0.05	99.7
100		46.1	52.1	1.46	-	-	-	-	-	99.7
101		46.0	52.2	1.45	0.02	-	-	0.02	0.05	99.8
102		46.2	52.2	1.46	0.02	-	-	0.02	0.05	99.9
	average	46.2	52.1	1.47					0.06	99.8
	1S	0.1	0.1	0.01					0.03	0.2

Table S2 continued

'-' indicates 'Not detected'.

Sample	$\delta^{34}S_1$	$\delta^{56}Fe_1$	$\delta^{34}S_2$	$\delta^{56}Fe_2$	$\delta^{34}S_3$	$\delta^{56}Fe_3$	$\delta^{34}S_4$	$\delta^{56}Fe_4$	$\delta^{34}S_6$	$\delta^{56}Fe_6$
No.	to 5 [†]	to 5^{\dagger}	to 5 [†]	to 5^{\dagger}	to 5 [†]	to 5 [†]	to 5^{\dagger}	to 5^{\dagger}	to 5^{\dagger}	to 5^{\dagger}
1	0.12	0.24	0.00	0.01	-0.09	0.06	0.14	0.19	-0.02	0.05
2	-0.03	0.25	0.07	-0.07	-0.12	0.14	0.11	0.08	-0.08	-0.01
3	0.01	0.23	-0.01	0.02	0.00	0.09	0.05	0.22	0.06	-0.02
4	-0.04	0.17	0.10	0.09	-0.03	0.06	0.03	0.24	0.12	-0.05
5	-0.01	0.11	0.08	0.00	0.02	0.05	0.01	0.19	0.14	0.04
6	0.04	0.17	-0.01	-0.03	-0.06	0.05	0.02	0.32	0.11	0.06
7	-0.02	0.28	-0.06	0.10	-0.09	0.04	0.07	0.17	-0.03	0.04
8	-0.04	0.29	0.07	0.04	-0.09	0.08	0.06	0.09	0.02	-0.03
9	-0.03	0.16	0.02	-0.07	-0.11	0.03	0.11	0.22	-0.07	-0.10
10	-0.13	0.16	-0.10	-0.08	-0.17	0.00	0.01	0.09	0.06	-0.02
11	-0.19	0.19	0.01	-0.01	-0.21	0.04	0.10	0.17	0.11	-0.03
12	-0.14	0.16	0.11	-0.05	-0.06	0.17	0.03	0.24	0.07	0.12
13	-0.05	0.06	-0.03	-0.13	-0.04	0.10	0.00	0.10	-0.01	0.10
14	-0.13	0.17	-0.02	-0.10	-0.05	0.09	0.05	0.23	-0.08	0.00
15	-0.23	0.14	-0.01	-0.05	-0.05	0.16	0.07	0.22	0.17	-0.10
16	-0.24	0.07	0.06	-0.08	-0.08	0.17	0.00	0.25	0.00	-0.07
17	-0.22	0.16	0.04	0.00	-0.14	0.16	-0.01	0.14	0.01	-0.04
18	-0.27	0.16	0.02	0.00	-0.09	0.17	-0.02	0.20	0.07	0.08
average	-0.09	0.18	0.02	-0.02	-0.08	0.09	0.05	0.19	0.04	0.00
2S	0.22	0.13	0.11	0.12	0.11	0.11	0.09	0.13	0.15	0.13
* <i>t</i>	3.34	11.31	1.44	1.58	6.00	6.62	4.20	11.58	1.92	0.12
${}^{\ddagger}t_{critical}$	2.11									

Table S3 Position effects within a TV2 cell on iron and sulfur isotope composition measurement

[†]: $\delta^{34}S_{x \text{ to } 5}$ and $\delta^{56}Fe_{x \text{ to } 5}$ (x = 1, 2, 3, 4 and 6, respectively) were the deviations per mil of sulfur and iron isotope composition measured for IGGPy-1 pyrite on the position x relative to that on position 5, respectively.

t = $\frac{|\bar{x} - \mu|}{S}\sqrt{n}$. Here, \bar{x} is the mean of the deviation in iron or sulfur isotopic compositions measured in position 1, 2, 3, 4 and 6, respectively, calibrated against that measured in position 5; S is the standard deviation; n is the number of the values. μ represents the population of the deviations in iron or sulfur isotopic composition measured in position 1, 2, 3, 4 and 6, respectively. if the measurements on iron or sulfur isotopic composition were not influenced by position effects and only random error occurs, then $\mu = 0$.

[‡]: $t_{critical}$ values calculated using T.INV.2T function (two-tailed hypothesis) in Excel at the significance level of 0.05 and the freedom degree of 17.

Applied technique	fs-LA-MC-ICP-MS	fs-LA-MC-ICP-MS
Analytical No.	$\delta^{34}S_{VCDT}$	$\delta^{56}Fe_{IRMM-014}$
1	0.43	-2.31
2	0.46	-2.29
3	0.66	-2.28
4	0.64	-2.27
5	0.58	-2.24
6	0.56	-2.18
7	0.50	-2.22
8	0.39	-2.20
9	0.61	-2.15
10	0.58	-2.20
11	0.51	-2.14
12	0.65	-2.25
13	0.52	-2.20
14	0.34	-2.15
15	0.48	-2.29
16	0.54	-2.25
17	0.55	-2.17
18	0.53	-2.12
19	0.40	-2.08
20	0.34	-2.20
average	0.51	-2.21
2S	0.20	0.12
$^{\dagger}t$	47.14	56.69
$t_{critical}$	2.09	2.09
Applied technique	EA-IRMS	SN-MC-ICPMS
average	-0.52	-1.43
2S	0.30	0.06
Ν	2	3
	$t = \frac{ \overline{x} - \mu }{\sqrt{n}}$	

Table S4 Matrix effects between IGGPo-1 and IGGPy-1 on Fe and S isotope measurement

[†]: *t* values calculated using the formula: S V^T. Here, \bar{x} is the mean of the deviation values in iron (or sulfur) isotopic composition measured of IGGPo-1 pyrrhotite calibrated against IGGPy-1 pyrite; S is the standard deviation; n is the number of the values. μ represents the population of deviations in iron (or sulfur) isotopic composition, if the isotopic measurements were not influenced by matrix effects and only random error occurs, then μ should be near to iron (or sulfur) isotopic reference value obtained by SN-MC-ICP-MS (or EA-IRMS).

[‡]: $t_{critical}$ values calculated using T.INV.2T function (two-tailed hypothesis) in Excel at the significance level of 0.05 and the freedom degree of 19.

Sample	Analysis#	$\delta^{56}Fe_{IRRM014}$	$\delta^{57}Fe_{IRRM014}$	$\delta^{34}S_{VCDT}$	Description		
12744a	Test 1	Ablated mate	rial proportion	of 5:1 used	d for measuring S and Fe isotopes		
	1	0.38	0.59	2.85			
	2	0.47	0.69	2.71	Signal intensities of ⁵⁶ Fe and ³² S		
	3	0.43	0.60	2.78	were about 10 V and 24 V,		
	4	0.52	0.65	2.76	respectively.		
	5	0.37	0.58	2.75			
	6	0.38	0.49	2.69			
	7	0.29	0.39	2.61			
	8	0.28	0.34	2.67			
	9	0.34	0.33	2.81			
	10	0.35	0.51	2.77			
	11	0.32	0.60	2.73			
	Average	0.37	0.52	2.74			
	2S	0.15	0.25	0.13			
	Test 2	Ablated mate	rial proportion	of 3:1 used	for measuring S and Fe isotopes		
	12	0.38	0.49	2.74			
	13	0.40	0.45	2.81	Signal intensities of ⁵⁶ Fe and ³² S		
	14	0.45	0.51	2.52	were about 18 V and 20 V,		
	15	0.41	0.68	2.69	respectively.		
	16	0.34	0.55	2.76			
	17	0.41	0.64	2.72			
	18	0.39	0.52	2.83			
	19	0.36	0.58	2.68			
	20	0.38	0.48	2.70			
	21	0.38	0.68	2.74			
	22	0.40	0.46	2.76			
	average	0.39	0.55	2.72			
	2S	0.06	0.17	0.17			
	Test 3	Ablated mate	rial proportion	of 3:2 used	for measuring S and Fe isotopes		
	23	0.57	0.76	2.85			
	24	0.49	0.79	2.77	Signal intensities of ⁵⁶ Fe and ³² S		
	25	0.49	0.69	2.89	were about 32 V and 18 V,		
	26	0.44	0.65	2.83	respectively.		
	27	0.45	0.72	2.85			
	28	0.40	0.59	2.92			
	29	0.46	0.68	3.02			
	30	0.47	0.69	2.89			
	31	0.43	0.66	2.89			
	32	0.50	0.85	2.85			
	33	0.53	0.85	2.88			
	average	0.47	0.72	2.88			
	2S	0.10	0.17	0.12			

Table S5 The results of simultaneous measurement of Fe and S isotopic compositions

Table S5 continued

H5a		Ablated materia	l proportion of 3	:1 used	for measuring S and Fe isotopes
	1	0.50	0.53	17.40	
	2	0.38	0.60	17.54	Signal intensities of 56Ee and
	3	0.41	0.68	17.15	32 S were about 18 V and 20 V
	4	0.49	0.59	17.55	respectively.
	5	0.57	0.69	17.38	respectively.
	6	0.42	0.64	17.33	
	7	0.34	0.55	17.54	
	8	0.48	0.63	17.38	
	9	0.40	0.54	17.34	
	10	0.40	0.53	17.41	
	11	0.42	0.59	17.41	
	average	0.44	0.60	17.40	
	2S	0.13	0.12	0.23	
66030a		Ablated materia	l proportion of 3	:1 used	for measuring S and Fe isotopes
	1	0.66	1.02	-2.47	
	2	0.61	0.92	-2.43	Signal intensities of ⁵⁶ Ee and
	3	0.66	0.96	-2.44	32 S were about 18 V and 20 V
	4	0.58	0.80	-2.45	respectively
	5	0.68	1.00	-2.52	respectively.
	6	0.81	1.04	-2.43	
	7	0.72	0.98	-2.42	
	8	0.61	0.94	-2.42	
	9	0.61	0.80	-2.35	
	10	0.65	0.91	-2.34	
	average	0.66	0.94	-2.43	
	2S	0.13	0.17	0.11	
	Fe and S is	sotopic composition	ons measured by	SN-MO	C-ICP-MS and SIMS, respectively
Sai	nple	$\delta^{56}Fe_{IRRM014}$	$\delta^{57}Fe_{IRRM014}$	Ν	$\delta^{34}S_{VCDT}$ N
127	'44a	0.38 ± 0.06	0.56 ± 0.07	4	2.87 ± 0.27 6
Н	[5a	0.46 ± 0.04	0.67 ± 0.11	4	17.35 ± 0.45 8
660)30a	0.64 ± 0.02	0.98 ± 0.11	4	-2.60 ± 0.18 7