Supporting information

Enabling batch and microfluidic non-thermal plasma chemistry: reactor design and testing.

Patrycja Roszkowska,^a Aaron Dickenson,^b Jonathan E. Higham,^c Timothy L. Easun,^{d,e*} James Walsh,^{b,f*} Anna G. Slater^{a*}

^aDepartment of Chemistry and Materials Innovation Factory, ^bDepartment of Electrical Engineering and Electronics, and ^cDepartment of Geography and Planning, School of Environmental Sciences, University of Liverpool, Liverpool, UK; d^cSchool of Chemistry, Cardiff University, Main Building, Park Place, Cardiff CF10 3AT, UK, ^cSchool of Chemistry, Haworth Building, University of Birmingham, Birmingham B15 2TT; ^fYork Plasma Institute, School of Physics, Engineering & Technology, University of York, York YO10 5DQ.

Reactor setup development:

Initially, two prototypes were designed using computer-aided design (CAD) and printed with use of fused deposition modelling (FDM) 3D printing technology using an Ultimaker 3. The first 3D printed chip had two liquid entrances (continuous phase), a plasma entrance (disperse phase), and an outlet (SI Fig. 1-1 and Fig. 2). The FDM slicing settings applied via Cura are available in SI Table 1, the material used was transparent PLA.

The major drawback in this chip design was lack of transparency and difficulties accessing the junction of the chip with the microscope lens. Therefore the design and printing method (SI Table 2) were improved yielding a second chip (SI Fig. 1-2 and Fig. 3). The inset to the SI Fig 1-2 shows that new design and printing method made it possible to succesfully record the bubbles of plasma with an optical microscope. The final version of the non thermal plasma microfluidic reactor (NTP-MR) is shown in Fig 1-3, working setup can be found in he following link: https://www.dropbox.com/s/1dizxtjqigop5zo/NTP-MR.mov?dl=0.

Microfluidic plasma probe

Figure 1. Development stages of Non Thermal Plasma Microfluidic Reactor (top): 1- 3D printed microfluidic chip prototype; 2- 3D printed microfluidic chip with transparent window; 3- final product with adapted Dolomite chip. Bottom: schematic representation of microfluidic plasma probe design.

3D printing method parameters and resulting printed chips.

The stl. for the model below is available under the following link: <u>https://www.thingiverse.com/thing:5448222</u> The channel size is 0.8mm.

Method 1		
Setting name	Option	
Quality		
Layer Height	0.06mm	
Shell		
Wall Thickness	1mm	
Wall Line Count	3	
Top/Bottom Thickness	1mm	
Top Thickness	1mm	
Top Layers	17	
Bottom Thickness	1mm	
Bottom Layers	17	
Horizontal Expansion	0mm	
Infill		
Infill Density	20%	
Infill Pattern	triangles	
Material		
Printing Temperature	195°C	
Build Plate Temperature	60°C	
Enable Retraction	\checkmark	
Speed		
Print Speed	60mm/s	
Travel		
Z Hop When Retracted		
Cooling		
Enable Print Cooling	\checkmark	
Fan Speed	100%	
Support		
Generate Support	OFF	
Build Plate Adhession		
Enable Prime Blob	\checkmark	
Build Plate Adhesion Type	Brim	
Build Plate Adhesion Extruder	Extr.1	
Dual Extrusion		
Enable Prime Tower	OFF	

Table 1. Summary of FDM method 1 used with Ultimaker Cura on an Ultimaker 3 3D printer.

Figure 2. Microfluidic chip in use with plasma: A- and water with food dye; B- without any solution in the chip. Printed using PLA filament with method 1 sliced with Ultimaker Cura on Ultimaker 3, 3D printer.

The stl. for the model below is available under the following link: <u>https://www.thingiverse.com/thing:5448241</u>

Method 2		
Setting name	Option	
Quality		
Layer Height	0.05mm	
Shell		
Wall Thickness	1mm	
Wall Line Count	3	
Top/Bottom Thickness	1mm	
Top Thickness	1mm	
Top Layers	0	
Bottom Thickness	1mm	
Bottom Layers	999999	
Horizontal Expansion	0mm	
Infill		
Infill Density	100%	
Infill Pattern	lines	
Material		
Printing Temperature	250°C	
Build Plate Temperature	100°C	
Enable Retraction	\checkmark	
Speed		
Print Speed	50mm/s	
Travel		
Z Hop When Retracted	\checkmark	
Cooling		
Enable Print Cooling	OFF	
Support		
Generate Support	OFF	
Build Plate Adhession		
Enable Prime Blob	\checkmark	
Build Plate Adhesion Type	Brim	
Build Plate Adhesion Extruder	Extr.1	
Dual Extrusion		
Enable Prime Tower	OFF	

Table 2. Summary of FDM method 2 used with Ultimaker Cura on Ultimaker 3, 3D printer.

Figure 3. Microfluidic chip: A- crude 3d printed chip; Channel size: red-1.2 mm; green-0.6 mm; orange-0.8 mm; yellow-1 mm; B- ready to use 3d printed chip. Printed using PETg filament with method 2 sliced with Ultimaker Cura on Ultimaker

3D printing designs for the Optical Emission Spectra (OES) fibre-probe holder.

The stl. for the model below is available under the following link: <u>https://www.thingiverse.com/thing:5874553</u>

Figure 4. CAD designs for 3D printing parts to reproducibly hold the OES fibre-probe in place. Designed to be used with parts presented in Figure 5. Dimensions of the block fit standard commercially available interlocking modular plastic blocks, the hole for the OES is 1 mm diameter.

Figure 5. CAD designs for 3D printing parts allowing reproducible movement of the OES holder across the X and Y axis. Dimensions of the block fit standard commercially available interlocking modular plastic blocks.

Methylene Blue proposed reaction pathway

The mechanism of degradation of methylene blue (MB) has been previously discussed: for example, Huang¹ (2010) proposed the mechanism of MB degradation based on bond dissociation energy (BDE) and highlighted possible breakdown of the molecules supported by the experimental data presented in their study (Scheme 1, pathway 1). The work of Benetoli² (2012) assumed two possible pathways, one by the impact of high energy electron (Scheme 1, pathway 2); the second via successive hydroxylation addition of the MB benzene ring. In the work of Attri³ (2016), experimental and simulation work was used to better understand the mechanism of MB degradation; although their result agreed on the importance of OH radicals, full reaction pathways were not proposed. Krosuri⁴ (2021) used TIC to analyse intermediate and final product of the MB degradation which corresponded to the first pathway presented by Benetoli (Scheme 1, pathway 2). Here, we focus on reactor design and hence have not investigated which degradation pathway is followed.

Scheme 1 Possible NTP degradation pathways as described in references S1 and S2.

Energy Yield Calculations:

The energy efficiency (Y) of MB degradation⁵ is calculated from the following equation:

$$Y(g kW^{-1} h^{-1}) = \frac{C(g L^{-1}) \times V(L) \times \frac{1}{100} \times \eta(\%)}{P(kW) \times t(h)}$$

Where C is the initial concentration of MB, V is the volume of the sample, η is the degradation at the t time and P is the power used.

References:

- S1 F. Huang, L. Chen, H. Wang and Z. Yan, *Chem. Eng. J.*, 2010, **162**, 250–256.
- S2 L. O. de B. Benetoli, B. M. Cadorin, V. Z. Baldissarelli, R. Geremias, I. G. de Souza and N. A. Debacher, *J. Hazard. Mater.*, 2012, **237–238**, 55–62.
- S3 P. Attri, M. Yusupov, J. H. Park, L. P. Lingamdinne, J. R. Koduru, M. Shiratani, E. H. Choi and A. Bogaerts, *Sci. Rep.*, 2016, **6**, 1–14.
- S4 A. Krosuri, S. Wu, M. A. Bashir and M. Walquist, *J. Water Process Eng.*, 2021, 40 DOI:10.1016/j.jwpe.2021.101926.
- S5 L. Wu, Q. Xie, Y. Lv, Z. Zhang, Z. Wu, X. Liang, M. Lu and Y. Nie, RSC Adv., 2019, 9, 25967–25975.