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Supplementary Figures 

Fig. S1 Numerical simulation domains (a) The periodic structure with a quarter-microwell for the 
3D study. (b) 3D computational domain cross-section ( -  view). (c) 1D simulation domain𝑥 𝑧
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Fig. S2 Numerical analysis results. (a) Iterative numerical optimization using 1D model. (b) 
Averaged radiation force for domains of variable water layer height above the microwells and 
applied frequency f, showing both channel (left) and transducer (right) resonance peaks. 
Microwells in the parametric study have diameter D = 35 µm and spacing S = 15 µm.
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Fig. S3 Schematic depiction of microfluidic device fabrication steps, performed sequentially from 
a to h.
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Fig. S4 Combined acoustic radiation and acoustic streaming-induced force and particle trajectories 
calculated for different particle sizes  (a, e),  (b, f),  (c, g), 𝑑𝑝𝑠 = 1 µ𝑚 𝑑𝑝𝑠 = 2 µ𝑚 𝑑𝑝𝑠 = 3 µ𝑚

 (d, h) with D = 20 µm S = 20 µm (top row) and D = 35 µm, S = 15 µm (bottom row).𝑑𝑝𝑠 = 10 µ𝑚
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Fig. S5 Experimental particle trapping in square periodic cavities with width D = 30 µm and 
different spacing S. Rows (a-e) denote increasing S, with S = 20, 30, 50, 70 and 90 µm, 
respectively, in which 5 µm (yellow polystyrene), 10 µm (green polystyrene) and 15 µm non-
fluorescent PMMA) particles are patterned. The actuation frequency is 5.8 MHz and driving 
voltage is . Sizes are in µm. Scale bar is 200 µm.𝑉1 = 20 𝑉
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Fig. S6 The filling efficiency of circular microwells seeded with 15 µm PMMA microparticles.
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Fig. S7 293F cells capture in microwell arrays. (a) The filling efficiency of various well 
configurations. (b) Total-, single-, double-, triple- and quadruple-cell-per-well filling rates.
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Fig. S8 Computational grid for the simulation domains (a) Mesh convergence study for the 
Gor’kov potential  field in 3D and 1D studies. Dashed line indicates C = 0.002 threshold. (b-𝑈𝑟𝑎𝑑

d) Computational mesh for the 3D study. (d) Close-up of the computational mesh for the fluid 
domain, with (с) showing the mesh elements at the fluid/solid boundary. (e) Computational grid 
for the 1D study.
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Supplementary Movies

Movie S1 5 µm florescent particles focusing in welled array with diameter D = 35 and spacing S 
= 15 µm. Scale bar is 200 µm.

Movie S2 15 µm PMMA particles isolation with one particle per well in welled array with diameter 
D = 20 and spacing S = 30 µm. Scale bar is 200 µm.

Movie S3 15 µm PMMA particles focusing in welled array with diameter D = 30 and spacing S = 
30 µm. Scale bar is 200 µm.
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Movie S4 10 µm green fluorescent PS particles arrangement in bio-mimicking shapes. Scale bar 
is 500 µm.

Movie S5 10 µm green fluorescent PS particles subsequent release and capture in shape of the 
University of Melbourne logo. Scale bar is 500 µm.
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Supplementary Notes

Note S1.
Governing equations
The piezoelectric actuator is driven by a time-harmonic ac-voltage  of amplitude  and 𝑉 = 𝑉1𝑒𝑖𝜔𝑡 𝑉1

angular frequency , where  is the oscillation frequency. According to perturbation theory, 𝜔 = 2𝜋𝑓  𝑓

physical fields can be decomposed to initial, first and second-order terms , where 𝑔 = 𝑔0 + 𝑔1 + 𝑔2

0-order term is the initial (background) condition. The first-order fields are time-dependent 
harmonic oscillations  where  is the complex valued amplitude. In the first 𝑔1(𝑟,𝑡) = �̅�1(𝑟)𝑒𝑖𝜔𝑡

�̅�(𝑟)
step we solve the first order (linear) equations to generate maps of the acoustic potential fields. By 
utilizing the phase-dependent factor , the time dependent solution can be produced.𝑒𝑖𝜔𝑡

The LiNbO3 piezoelectric substrate was modelled with solid mechanics and electromechanical 
coupling. We introduce a Cartesian material coordinate system (X, Y, Z) to define constitutive 
equations and material properties for 128° rotated Y-cut LiNbO3. Constitutive equations to 
describe the substrate relate the mechanical stress tensor  and the electric displacement field  𝜎1 𝐷1

with the elastic displacement field  and the electric potential . In the Voigt representation they 𝑢1 𝜑1

are given by

(
𝜎𝑋
𝜎𝑌
𝜎𝑍

𝜎𝑌𝑍
𝜎𝑋𝑍
𝜎𝑋𝑌
𝐷𝑋
𝐷𝑌
𝐷𝑍

) = (
𝐶11 𝐶12 𝐶13
𝐶12 𝐶22 𝐶23
𝐶13 𝐶23 𝐶33

𝐶14   0    0  
𝐶24   0    0  
𝐶34   0    0  

   0   ‒ 𝑒21 ‒ 𝑒31
   0   ‒ 𝑒22 ‒ 𝑒32
   0   ‒ 𝑒23 ‒ 𝑒33

𝐶14 𝐶24 𝐶34
0 0 0
0 0 0

𝐶44 0 0
  0  𝐶55 𝐶56
  0  𝐶56 𝐶66

0 ‒ 𝑒24 ‒ 𝑒34
‒ 𝑒15 0 0
‒ 𝑒16 0 0

0 0 0
𝑒21 𝑒22 𝑒23
𝑒31 𝑒32 𝑒33

  0  𝑒15 𝑒16
𝑒24 0 0
𝑒34 0 0

  𝜀11 0 0
0   𝜀22   𝜀23
0   𝜀23   𝜀33

)(
∂𝑋𝑢𝑋
∂𝑌𝑢𝑌
∂𝑍𝑢𝑍

∂𝑍𝑢𝑍 + ∂𝑌𝑢𝑌
∂𝑍𝑢𝑍 + ∂𝑋𝑢𝑋
∂𝑌𝑢𝑌 + ∂𝑋𝑢𝑋

‒ ∂𝑋𝜑
‒ ∂𝑌𝜑
‒ ∂𝑍𝜑

), (2)

where  are the elastic constants,  are the electric permittivities, and  are the piezoelectric 𝐶𝑖𝑗 𝜀𝑖𝑗 𝑒𝑖𝑗

coupling constants. We introduce damping in the system through complex-valued elastic 
coefficients1

𝐶𝑖𝑗 = 𝐶 '
𝑖𝑗 + 𝑖𝐶 ''

𝑖𝑗 = 𝐶 '
𝑖𝑗(1 + 𝑖𝜂),  𝜂 =

1
𝑄𝑚

, (3)

where  is isotropic loss factor,  is mechanical quality factor. Cauchy equation and Gauss’s law 𝜂 𝑄𝑚

for the piezoelectric substrate (without free charges) take form
∇ ⋅ 𝜎1 =‒ 𝜌0𝜔2𝑢1, (4)

∇ ⋅ 𝐷1 = 0, (5)
where  is the mass density. The actuation of the piezoelectric electrodes is simulated using a 𝜌0

terminal boundary condition with zero voltage on the bottom electrode and harmonic voltage with 
amplitude  V on the top one.𝑉1 = 20

We model the remaining non-piezoelectric solid domains (PDMS, glass, SU-8) as isotropic elastic 
materials. Constitutive equations for these domains include the Cauchy equation (4) and Hooke’s 
Law, with
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(
𝜎𝑥
𝜎𝑦
𝜎𝑧
𝜎𝑦𝑧
𝜎𝑥𝑧
𝜎𝑥𝑦

) = (
𝐶11 𝐶12 𝐶12
𝐶12 𝐶11 𝐶12
𝐶12 𝐶12 𝐶11

  0    0    0  
0 0 0
0 0 0

  0    0    0  
0 0 0
0 0 0

𝐶44 0 0
0 𝐶44 0
0 0 𝐶44

)(
∂𝑥𝑢𝑥
∂𝑦𝑢𝑦
∂𝑧𝑢𝑧

∂𝑧𝑢𝑧 + ∂𝑦𝑢𝑦
∂𝑧𝑢𝑧 + ∂𝑥𝑢𝑥
∂𝑦𝑢𝑦 + ∂𝑥𝑢𝑥

). (6)

Considering mechanical damping through equation (3), storage modulus  in turn can be 𝐶 '
𝑖𝑗

characterized by the longitudinal  and transverse  sound speeds, or Young’s modulus  and the 𝑐𝐿 𝑐𝑇 𝐸
Poisson’s ratio , with𝜈

𝐶 '
11 = 𝑐2

𝐿𝜌0 =
𝐸(1 ‒ 𝜈)

(1 + 𝜈)(1 ‒ 2𝜈)
, (7)

𝐶 '
44 = 𝑐2

𝑇𝜌0 =
𝐸

(1 + 𝜈)
, (8)

𝐶 '
12 = 𝐶 '

11 ‒ 𝐶 '
44. (9)

A symmetry boundary condition was further applied on all side walls using
𝑢1 ⋅ 𝑛 = 0. (10)

where  is the unit normal with respect to the boundary. 𝑛

In the fluid domains (water, silicone oil), a set of linearized governing equations of continuity, 
energy, and momentum conservation is considered, with

∂𝜌1

∂𝑡
=‒ 𝜌0∇ ⋅ 𝑣1, (11)

∂𝑇1

∂𝑡
= ∇(𝐷𝑇∇𝑇1) +

𝛼𝑇0

𝜌0𝐶𝑝

∂𝜌1

∂𝑡
, (12)

𝜌0

∂𝑣1

∂𝑡
=  ‒ ∇𝑝1 + 𝛽𝜇∇(∇ ⋅ 𝑣1) + 𝜇∇2𝑣1, (13)

where  is the mass density,  , ,  are 1st-order harmonic perturbation of density, velocity, 𝜌0 𝜌1 𝑣1 𝑇1 𝑝1

temperature and pressure respectively,  is the thermal diffusivity of the liquid,  is the isobaric 𝐷𝑇 𝛼

thermal expansion coefficient relating density change with temperature,  is the 𝑇0 = 293.15 𝐾

ambient temperature,  is the specific heat capacity at constant pressure,  is the viscosity ratio, 𝐶𝑝 𝛽

relating the bulk ( ) and dynamic ( ) viscosities,2 with . The equation of states formulates 𝜇' 𝜇
𝛽 =

𝜇'

𝜇
+

1
3

the constitutive relation between density, pressure and temperature:

𝜌1 =
𝑝1

𝑐2
‒ 𝜌0𝛼𝑇1, (14)

where  is the sound speed. Since the silicone oil domain is facing a PML, we neglect heat transfer 𝑐
and viscous dissipation for this medium.

At the solid-fluid boundary the velocity was set to be continuous, with
𝑣1 =‒ 𝑖𝜔𝑢1. (15)

A slip boundary condition was also applied on the outer side walls of the fluid domains to simulate 
a periodic array (symmetry condition), where

𝑣1 ⋅ 𝑛 = 0. (16)
Finally, adiabatic boundary conditions on the fluid domain boundaries completes the numerical 
model, with

𝑛 ⋅ (𝐷𝑇∇𝑇1) = 0. (17)
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We use a PML on the top and the bottom walls to mimic non-reflecting boundaries as shown in 
Fig. S1b,c. The PML acts as an artificial absorbing domain by imposing a complex-valued 
coordinate displacement in the  direction (polynomial stretching), with𝑧

∆𝑧 = 𝜆�̂�(1 ‒ 𝑖) ‒ ℎ𝑃𝑀𝐿�̂�, (18)
where  is acoustic wavelength,  is a local dimensionless coordinate, which varies from 0 to 1 𝜆 �̂�

over the PML height, where we set  as the PML height.ℎ𝑃𝑀𝐿 = 𝜆 2

Particles suspended in the fluidic channel are subject to a time-averaged acoustophoretic radiation 
force . For a spherical particle with diameter , this is given by Gor’kov,3 with𝐹𝑟𝑎𝑑 𝑑𝑏

𝐹𝑟𝑎𝑑 =‒ ∇𝑈𝑟𝑎𝑑,  𝑈𝑟𝑎𝑑 = 𝑉𝑝𝑠(1
2

𝑓1𝑘𝑤〈𝑝2〉 ‒
3
4

𝑓2𝜌𝑤,0〈𝑣2〉)
𝑉𝑝𝑠 =

𝜋
6

𝑑 3
𝑝𝑠,  𝑓1 = 1 ‒

𝑘𝑝𝑠

𝑘𝑤
,  𝑓2 =

2(𝜌𝑝𝑠 ‒ 𝜌0,𝑤)
2𝜌𝑝𝑠 + 𝜌0,𝑤

,  𝑘𝑤 =
1

𝜌𝑤,0𝑐2
𝑤

,
(19)

where  is the Gor’kov potential,  is a bead volume,  and  are monopole and dipole 𝑈𝑟𝑎𝑑 𝑉𝑝𝑠 𝑓1 𝑓2

coefficients,  is compressibility,  is density, and the superscripts  and  denotes water and 𝑘 𝜌 𝑤 𝑝𝑠
polystyrene beads respectively. The bracketed quantities denote the time average over one 
oscillation period of the complex time-harmonic, where for fields  and , , 𝐴 𝐵 〈𝐴𝐵〉 = 0.5𝑅𝑒(𝐴 ∗ 𝐵)
where the asterisk denotes complex conjugation. The expression (19) is valid for small particles 
compared to the fluidic wavelength, with . At  the fluidic wavelength is  um, 𝑑𝑝𝑠 ≪ 𝜆𝑓 7 𝑀𝐻𝑧 𝜆𝑓~200

where this expression is appropriate for the 5-15 µm diameter beads used in this study.

Since the Navier–Stokes governing equation are non-linear, harmonic actuation generates higher 
order responses. Following the perturbation theory, the second order time-averaged fields in the 
fluid domain  can be calculated:〈𝑔2(𝑟,𝑡)〉

‒ ∇ ⋅ 〈𝜌1𝑣1〉 = 𝜌0∇ ⋅ 𝑣2, (20)

𝜌0〈(𝑣1 ⋅ ∇)𝑣1〉 + 〈𝜌1

∂𝑣1

∂𝑡 〉 =  ‒ ∇〈𝑝2〉 + 𝛽𝜇∇(∇ ⋅ 𝑣2) + 𝜇∇2𝑣2. (21)

Hence the first-order fields drive the second-order time-averaged fields, termed acoustic 
streaming. To appropriately model the interaction of flowing fluid with structures, non-slip 
boundary conditions are applied at fluid-solid interfaces:

𝑣2 = 0, (22)
and a slip boundary condition (symmetry condition) on the outer side walls (in the fluid domain):

𝑣2 ⋅ 𝑛 = 0. (23)

Note S2.
Mesh study
A hybrid computational mesh was used in the study, where fluid and SU-8 domains have a 
tetrahedral mesh and other domains have swept triangular prism mesh. A mesh convergence study 
was conducted using the approach from Devendran et al.4 and Muller et al..5 A convergence 
function  can be written as follows:𝐶(𝑔)
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𝐶(𝑔) =
∫(𝑈𝑟𝑎𝑑

𝑔 ‒ 𝑈𝑟𝑎𝑑
𝑟𝑒𝑓)2𝑑𝑥 𝑑𝑦 𝑑𝑧

∫(𝑈𝑟𝑎𝑑
𝑟𝑒𝑓)2𝑑𝑥 𝑑𝑦𝑑𝑧

, (24)

where  is the current solution,  is a reference solution. Current and reference solutions have 𝑔 𝑈𝑟𝑎𝑑
𝑟𝑒𝑓

mesh element size of  and  respectively in the fluid and SU-8 domains with additional 𝑑𝑚 𝑑𝑚, 𝑟𝑒𝑓

mesh refinement in the fluid boundary layer. Other domains have mesh elements not exceeding 
. The mesh study was performed for wells with diameter D = 20 µm and spacing of S = 20 µm 4𝑑𝑚

at 5.56 MHz excitation. Fig. S8a. shows Gor’kov potential convergence in the fluid domain. 
Convergence threshold of  realized in a computational meshes with  µm used in 𝐶 < 0.002 𝑑𝑚 = 4.25

this study (Fig. S8b-d and Fig. S8e.).

Note S3.
Half-wave resonance condition
The space between the piezoelectric substrate and glass coverslip can be treated as a half-
wavelength resonator bounded by these two high acoustic impedance materials. This resonator 
comprises three layers and two materials, namely a uniform SU-8 photoresist layer, hybrid (cavity) 
layer and a water channel domain. The LiNbO3/SU-8 and water/glass boundaries have high 
acoustic reflection due to strong acoustic impedance mismatch between the adjacent media. The 
half-wave resonance condition for such a multi-layered resonator can be derived using

𝑓0.5 =
0.5

∑
𝑖

ℎ𝑖

𝑐𝑖

 ,
(25)

where  and  are the height and speed of sound of the resonator components and  is the half-ℎ 𝑐 𝑓0.5

wave resonance frequency. We define the effective speed of sound in the welled hybrid layer as 
an average of SU-8 and water properties considering their relative volume fraction

𝑐ℎ𝑦𝑏 = (𝑐0,𝑤 ‒ 𝑐𝐿,𝑠)𝜋
4( 𝐷

𝑆 + 𝐷)2 + 𝑐𝐿,𝑠 , (26)

where  is longitudinal sound speed of SU-8 defined by (7).𝑐𝐿,𝑠
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Supplementary Tables

Table S1. Material properties used in the computational study
Material / Property Notation Value
Polydimethylsiloxane (PDMS) 6 7
Density 𝜌0,𝑝 1070 kg m-3

Longitudinal wave speed 𝑐𝐿, 𝑝 1030 m s-1

Transverse (shear) wave speed 𝑐𝑇, 𝑝 100 m s-1

Loss factor 𝜂𝑝 0.001
Pyrex (borosilicate) glass 7
Density 𝜌0,𝑔 2230 kg m-3

Longitudinal speed of sound 𝑐𝐿,𝑔 5591 m s-1

Transverse speed of sound 𝑐𝑇,𝑔 3424m s-1

Loss factor 𝜂𝑔 0.001
Water 4
Density 𝜌0,𝑤 997 kg m-3

Sound speed 𝑐𝑤 1497 m s-1

Dynamic viscosity 𝜇 0.00089 Pa s
Bulk viscosity 𝜇' 0.00247 Pa s
Viscous boundary layer 𝛿𝑣 =  2µ 𝜌𝜔 0.2 µm
Thermal conductivity 𝐷𝑇 0.603 W m-1 K-1

Specific heat capacity 𝐶𝑝 4183 J kg-1 K-1

Thermal expansion coefficient 𝛼 0.000297 K-1

SU-8 (3050)
Density 8 𝜌0,𝑠 1153 kg m-3

Young’s Modulus 8 𝐸𝑠 2 Gpa
Poisson ratio 9 𝜈𝑠 0.35
Loss factor 9 𝜂𝑠 0.023
LiNbO3 (COMSOL Material library)
Density 𝜌0,𝑙 4700 kg m-3

Elastic constants 𝐶𝑖𝑗 See Table S2.
Piezoelectric coupling constants 𝜀𝑖𝑗 See Table S2.
Permittivity constants 𝑒𝑖𝑗 See Table S2.
Quality factor (experimentally acquired) 𝑄𝑙 59
Loss factor (experimentally acquired) 𝜂𝑙 0.017
Silicone oil 10

Density 𝜌0,𝑜 947 kg m-3

Sound speed 𝑐𝑜 1004 m s-1

Polystyrene beads 11

Density 𝜌𝑝𝑠 1050 kg m-3

Compressibility 𝑘𝑝𝑠 249 Tpa-1

Diameter 𝑑𝑝𝑠 10 µm

Table S2. Lithium Niobate LiNbO3 constants
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Property Notation Value
Elastic constants , 𝐶11 𝐶22 202.90 GPa

𝐶12 52.92 GPa
, 𝐶13 𝐶23 74.91 GPa

𝐶14 9.00 GPa
𝐶24 -9.00 GPa
𝐶33 243.08 GPa
𝐶34 0
, 𝐶44 𝐶55 59.90 GPa

𝐶56 8.99 GPa
𝐶66 74.88 GPa

Piezoelectric coupling constants , 𝑒21 𝑒16 -2.54 C m-2

𝑒22 2.54 C m-2

, 𝑒23 𝑒34 0
, 𝑒24 𝑒15 3.70 C m-2

, 𝑒31 𝑒32 0.19 C m-2

𝑒33 1.31 C m-2

Permittivity constants , 𝜀11 𝜀22 43.6
𝜀23 0
𝜀33 29.16
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