Electronic Supplementary Material (ESI) for Lab on a Chip. This journal is © The Royal Society of Chemistry 2023

1		Supplementary information					
2	Design of a Multilayer Lung Chip with Multigenerational Alveolar Ducts to						
3		Investigate the Inhaled Particle Deposition					
4		Yan Qiu, ^{a†} Chao Lu, ^{b†} Fubing Bao ^c and Guoqing Hu ^{a*}					
5	a.	Department of Engineering Mechanics, State Key Laboratory of Fluid Power and Mechatronic Systems,					
6	Zhejiang University, Hangzhou 310027, China. Email: ghu@zju.edu.cn						
7	b.	College of Metrology and Measurement Engineering, China Jiliang University, Hangzhou 310018, China					
8	c.	Zhejiang Provincial Key Laboratory of Flow Measurement Technology, China Jiliang University, Hangzhou					
9		310018, China					
10	Ť	These authors contributed equally to this work.					
11							
12	Video S1: Continuous photography of the flow field for one respiratory cycle.						
13							
14	Method for measuring the particle size distribution: The diameter of the particles was						
15	measured with an inverted fluorescence microscope (IX73; Olympus, Tokyo, Japan). Sodium						
16	fluorescein (molecular weight = 376.27 g/mol) solution in water was sprayed at a rate of 2						
17	g/L. The nebulizer was turned on and the applicator was aimed vertically at a glass slide with						
18	a side length of 5 cm. The spraying time is approximately 2 s. Immediately after, the slides						
19	were placed on the microscope for photography. The obtained photographs were post-						
20	processed using ImageJ software.						

21

22

23 Fig. S1 Photographs of individual particle positions on a glass piece. (A) Snapshots of a glass

- 24 piece with a 2 s spray time. (B) Results of post-processing using ImageJ software.
- 25

26 Due to the limited resolution of the microscope, particles with diameters less than 0.2 µm are

27 ignored. The particle data were found to be statistically close to a normal distribution with a

28 $\,$ count mean diameter of 1.32 $\mu m.$ The particle size distribution data were used to set the

29 particle diameter distribution in the numerical simulation.

4

1 2

3

5 Fig. S3 The expansion of the PDMS ducts during the respiration cycle. The white dashed line

6 represents the position of the wall at t=0, at which point all the air is exhaled and the wall

7 displacement along its normal direction is minimal; the red dashed line corresponds to the

8 position of the wall at t=0.5T, at which point the inhalation volume is at its maximum, and the

9 wall displacement along its normal direction is at its maximum.

10

11 Calculation of flow rates in an ideal multi-generational tree-bifurcated tracheal structure:

12 Assuming that each generation of trachea is divided into two equal next-generation tracheae,

13 we obtain the flow rate of each generation of alveolar ducts as

$$Q_{\mathrm{d},i+1} = \frac{Q_{\mathrm{d},i}}{2} \tag{S1}$$

1

2 where i = 0, 1, 2, 3, ..., and 23. For an adult weighing 50 kg, whose lungs inhale a tidal

3 volume of airflow of approximately 500 mL within an inspiration time of 2 s, the average

4 flow rate in the 16th generation airways can be calculated from equation (S1) as $3.81 \,\mu$ L/s.

5 The polytetrafluoroethylene tube used in the experiment has a diameter of 0.5 mm, and the

6 corresponding inspiratory flow velocity can be calculated to be 19.43 mm/s.

7

8 Table. S1 Standard deviation of particle deposition rates for different respiration conditions

9 after two breathing cycles						
	Generation	1 (16th)	2 (17th)	3 (18th)	4 (19th)	5 (20th)
	а	0.069	0.023	0.044	0.036	0.059
	b	0.066	0.056	0.032	0.065	0.060
	с	0.065	0.043	0.003	0.004	0.101
	d	0.045	0.061	0.044	0.024	0.061
	e	0.064	0.054	0.036	0.015	0.091

10

11 Table. S2 Standard deviation of particle deposition rates for different respiration conditions

12	after five breathing cycles						
	Generation	1 (16th)	2 (17th)	3 (18th)	4 (19th)	5 (20th)	
	а	0.040	0.025	0.010	0.016	0.063	
	b	0.031	0.018	0.019	0.025	0.035	
	с	0.106	0.081	0.080	0.006	0.114	
	d	0.020	0.002	0.032	0.002	0.053	
	e	0.044	0.056	0.025	0.019	0.049	

13

14 Table. S3 P-values of particle deposition rates for different respiration conditions for two and 15 five respiratory cycles

-	merephane						
	Generation	1 (16th)	2 (17th)	3 (18th)	4 (19th)	5 (20th)	
	а	0.968	0.327	0.191	0.129	0.755	
	b	0.375	0.590	0.918	0.556	0.447	
	с	0.808	0.773	0.680	0.022	0.999	
	d	0.308	0.667	0.877	0.022	0.919	
	e	0.750	0.839	0.401	0.807	0.937	

16