Supplementary

Device parameters		
Period (N)	45	
Gap size (G)	16µm	
Angle (θ)	3.18°	
Critical diameter (D_c)	5.6µm	

Supplementary figure 1. Specifications of single DLD device.

Supplementary figure 2. Specifications of multi-device DLD chip.

Supplementary figure 3. Components of the sorting system

Supplementary table 1. Flow conditions for whole blood sorting

	750mbar	500mbar	250mbar	
Blood flowrate	36 71 + 3 49	23 77 + 2 14	11 04 + 1 23	
(µL/min)	50.71 ± 5.15	23.77 - 2.11	11.01 ± 1.23	
Sheath flowrate	7738 ± 49	44.84 ± 4.03	22.27 ± 3.04	
(µL/min)	12.30 ± 4.9	+1.07 ± 1.03		
Q_{Sheath} : Q_{Blood}	1.96:1	1.89:1	2:1	

Supplementary discussion 1 – Experimental workflow: Firstly, we connected the tubings from the reservoir vials (sample fluid, sheath buffers, outlet (sort) and waste) to the chip on the modular platform. We then prime the device with the priming agent and wash chips with DPBS before flushing the device with DMEM. To start sorting, we loaded the undiluted BMA into the sample inlet port and entered the desired pressure into the HMI.

Supplementary figure 4. Experimental procedure and engineered system for scaled sorting operations of the DLD sorting microfluidic device(s). Step procedures for high throughput sorting using our in-house microfluidics pressure system with modular platforms. This 5 steps approach will allow for reduced user training and result variability associated with human error present in the Ficoll DGC protocol where the process is highly dependent on the user's technical knowledge and experience.

Supplementary figure 5. Unwanted cell coagulation trapped within the 20µm filter.

MSC PURITY

Supplementary figure 6. Purity of MSC phenotypic cell surface markers on sorted cells using DLD and Ficoll DCG

Supplementary table 2. Percentage values for MSC surface markers

	Negative markers		Positive markers			
	CD34	CD45	CD73	CD90	CD 105	CD 146
DLD sorting	90.33%	87.92%	99.16%	99.68%	99.07%	90.35%
Ficoll DGC	83.28%	84.67%	99.49%	99.83%	99.29%	98.55%

Supplementary table 3. P2 CFU-F efficiency

	Ficoll DGC	DLD sorting
CFU-F efficiency	5.31%	6.39%