Supplementary Information (SI) for Lab on a Chip. This journal is © The Royal Society of Chemistry 2024

Please do not adjust margins

ARTICLE

Α								Seeding
	μGroove	µGroove /well	Height (80 µm)	Length (µm)	Wide (μm)	Ratio	Area (mm²)	Area (mm²)
	5:1	263	75.64±7.88	506.6±9.00	119.1±9.70	0.2	0.039	10.25
	5:2	211	75.68±5.09	507 ± 11.06	212.3±10.29	0.4	0.078	16.45
	7:1	257	78.08±6.17	698.6±16.19	115.1 ± 14.54	0.142	0.054	13.87
	7:2	161	77.12±3.07	705.1±15.37	211.4±8.981	0.285	0.109	17.54
В		500	μm			700 µr	n	
E								
л 00		_		-				
1							_	
								-
Ę	_							-
1 00								
~	-	-					_	
С								
			1.		-			°
								7
	·a	-			The	_		1
			1.4					-
					man	-	-	
	1				10			2 7

Supplementary Figure 1. Characterization of SU-8 masters and µGroove substrates. (A) Experimental dimensions of 5:1, 5:2, 7:1 and 7:2 µGroove geometries. For Si masters, five pictures were taken along the samples with the profilometer to consider possible inhomogeneities inherent to the fabrication process. Values are expressed as mean ± SD. (B) Representative images of SU-8 masters characterized with an optical profilometer. (C) Representative brightfield images of µGroove structures (5:2, left panel). In some cases, delamination artifacts were observed causing shape distortion or partially closed structures (right panel). Scale bar: 100 µm.

Please do not adjust margins

MEDIA	COMPONENTS	REF	BRAND
	Skeletal muscle cell growh medium + Supplemented mix	PB-MH-272-0090	PELObiotech
Growth Media	10% Fetal Bovine serum (FBS)	10270-106	Gibco
	50 μg/ml Gentamicin	15750037	Gibco
	1X Glutamax	35050038	Gibco
Basic	DMEM	41966029	Gibco
Differentiation	100 μg/ml Apotransferine	T1147	SIGMA
Media	50 μg/ml Gentamicin	15750037	SIGMA
(bDM)	10 μg/ml Insulin	12643	SIGMA
	Newobasal medium	10888022	Gibco
	1X B27 Supplement	17504044	Gibco
	20 ng/ml Brain Derived Neurotrophic Factor (BDNF)	450-02	PEPROTECH
	5 ng/ml Ciliary Neutrophic Factor CNTF	450-13	PEPROTECH
Complete	50 μg /ml Gentamicin	15750037	GIBCO
Differentiation Media	1X Glutamax	35050038	Gibco
(cDM)	10 ng/ml Insulin-like growth Factor 1 IGF-1	13769	SIGMA
(02111)	4 μg /ml Laminin	L2020	SIGMA
	20 ng/ml Neurotrophin 3 NT-3	450-03	PEPROTECH
	50 ng/ml Recombinant Human Sonic Hedgehog (Shh)	100-45	PEPROTECH
	100 ng/ml Recombinant Rat Agrin Protein	550-AG	R&D SYSTEMS

Supplementary Figure 2. Human immortalized skeletal muscle media components.

Please do not adjust margins

В

promotes myotubes differentiation and maturation, thus increasing their contractile ns was perform at 4-dpd and analyzed with MUSCLEMOTION software. From these n time (RT₅₀) were determined.

6ms

Electrical Stimulation Unit

Supplementary Figure 3. Immortalized human myotubes development (8220). (A) Myoblast fuse and differentiate into isolated contractile myotubes within µGrooves of different geometries. Differentiation was promoted 24 hours after seeding (0 days in differentiation, 0 dpd). (B) Representative fluorescent images of DAPI stained nuclei 4 hours post-seeding. Scale bar: 100 µm

Please do not adjust margins

Supplementary Figure 5. Myotubes Excitability. **(A)** Myotubes were electrical stimulated at increasing voltages (4-40 V). Random fields have been selected in the case of the controls and full grooves in the case of the different geometries. We calculated the % of responding myotubes under electrical stimulation as the ratio of those contracting to those not contracting in the selected field. All myotubes grown in the NGC responded at 8 V while for the ones grown within μ Grooves, this response was highly dependent of voltage, increasing this parameter increase the number of myotubes that contract. **(B)** μ Grooves were simulated in Ansys Electronics software to study the electric field behaviour in the μ Grooves. **(C)** Electric field simulation for 8, 10 and 20 V in μ Grooves or NGC. Voltages of 4 and 40 were not analyzed because, for the first case, we obtained no response in either μ Grooves or NGC, and for the second case, all myotubes responded to this voltage. Width and length are displayed to check both orientations.

Supplementary Figure 6. Spontaneous contraction was observed after chronical stimulation with a frequency of approximately 1 Hz. In some cases, these spontaneous contractions were observed while evaluating the myotubes under increasing frequencies (yellow arrows).

Myotube width (µm)						
µGroove CV%						
E.1	21.1 ± 4.27	20.2				
5.1	(n=5)	20.5				
5.2	14.3 ± 5.63*	20.4				
5:2	(n=7)	39.4				
7.1	19.2 ± 4.05					
7:1	(n=10)	21				
7.2	23 ± 9.98	43.4				
7:2	(n=15)					
NCC	23.5 ± 11.8	50.2				
NGC	(n= 7 8)	50.2				

В

Ε

Kruskal-Wallis test followed by Dunn's post-hoc (5:2 vs NGC, *p<0.05)

Contractility (A.U.)						Twitch kinetics (ms)					
	Twitch (0.1.11-)	C1/9/	Tatanus (10 Ha)	C1/0/	Tetanic-to-twitch	C) /0/		ТТР	CV%	RT	CV%
	Twitch (0.1 Hz)	CV%	Tetanus (10 Hz)	CV70	Ratio	CV/0	5:1				
5:1	393 +186###	47 4	810 + 374	46.2	2 22 + 0 957	43	(n=11)	287 ± 51.9	18.1	389 ± 70.1	18
(n=11)	333 1100	17.1	010 ± 57 1	10.2	2.22 ± 0.557	15	5:2				
5:2	E07 + 390###	F.C. 0	704 + 455	573	176+0007	E1 1	(n=17)	403 ± 159	39.4	485 ± 213	44
(n=17)	307 ± 402	50.9	794 ± 455	57.5	1.70 ± 0.897	51.1	7.1				
7:1	577.200#						/:1	304 ± 68.6	22.6 360 ± 61	17	
(n=7)	577±299	51.8	1332 ± 519	38.9	2.82 ± 1.36	48.4	(n=7)				
7:2							7:2	202 + 120	46.2	$2\Gamma 1 + 121$	27.2
(n=10)	764 ± 419	54.9	993 ± 373	37.6	1.54 ± 0.755	48.9	(n=10)	302 ± 139	46.2	351 ± 131	37.2
NGC							NGC	201 1 40 4	12.0	446 + 00	20
(n=5)	651 ± 702	108	915 ± 538	58.8	2.28 ± 1.55	68.1	(n=5)	381 ± 49.1	12.9	446 ± 89	20

D	Resting cytosolic Ca ²⁺ (nM)				
	μGroove		CV%		
	5:1	32.9 ± 8.21** (n=5)	25		
	5:2	62.2 ± 17.5 (n=7)	28.2		
	7:1	69.6 ± 21.9 (n=10)	31.4		
	7:2	39.8 ± 19.9 (n=15)	49.9		
	NGC	57 ± 31.5 (n=15)	55.2		

Welch ANOVA followed by Dunnett's post-hoc test were used for statistical analysis. (5:1 vs NGC, **p < 0.01)

Cytosolic calcium fluxes (ΔF/F)									
	Twitch (0.1 Hz)	CV%	Tetanus (10 Hz)	CV%	Tetanic-to-twitch Ratio	c∨ %			
5:1 (n=5)	0.045 ± 0.016	35.3	0.067 ± 0.016	24.1	1.69 ± 0.90	53.4			
5:2 (n=4)	0.160 ± 0.050*	31.8	0.228 ± 0.103	45.3	1.41 ± 0.41	29.3			
7:1 (n=11)	0.085 ± 0.054 ^{##}	63	0.223 ± 0.140*	63	2.70 ± 0.43	16.1			
7:2 (n=7)	0.164 ± 0.162	98.7	0.274 ± 0.320	117	1.78 ± 1.07	60.5			
NGC (n=25)	0.072 ± 0.079 ^{##}	109	0.115 ± 0.143	125	2.07 ± 5.20	94.7			

Kruskal-Wallis test and Dunn's post-hoc test were used for statistical analysis. *p < 0.05. Paired t-test was used to analyze difference between twitch and tetanus contractions for 5:1, 5:2, 7:1 geometries. ###p < 0.001. Wilcoxon matched-pairs signed rank test was used for 7:2 μ Grooves and NGC. ##p < 0.01

Supplementary Figure 7. Coefficient of variation percentage (CV%) of μ Grooved myotubes and non-grooved controls (NGC) for different assays. (A) Myotube width (μ m). (B) Coefficient of variation (%CV) of myotube width datasets. The %CV decreased by 59.56%, 27%, 59.76% and 13.54% for 5:1, 5:2, 7:1 and 7:2 μ Grooves, respectively, compared to NGC. Dots represent values from different μ Groove geometries. (C) Twitch and tetanic contractility measured by peak amplitude (A.U., arbitrary units; left panel), and twitch kinetics for time to peak (TTP) and half-relaxation time (RT₅₀; right panel) (D) Resting cytosolic Ca²⁺ (nM). (E) Cytosolic calcium fluxes in response to twitch and tetanic stimuli. Statistical analyses performed are detailed below each table.

Please do not adjust margins

Supplementary Video 1 Spontaneous Contractions in μ Grooves substrates.