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Fig S1: Impedance metrics of live adherent, live floating cells and dead cells: Live adherent and live
floating cells have the same impedance characteristics in terms of phase at A) 0.5 MHz (¢Z 5 yyz), B) 2
MHz (¢Z; yuz), C) 18 MHz (¢pZ1g muz) 18 MHz and D 30 MHz (¢pZ30 yyz)- Live cells can be
distinguished from dead cells as they have lower ¢Z; 5y, and show larger phase at higher frequencies

(PZ18 Muz and PZ3o ppz)-
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Fig S2: Electric field extent for optimal focusing of sample to maximize pDEP without cell entrapment
at orifices: Focusing of the cells was optimized (~ 35 um away from orifice or 15 um from center of cross-
sectional width, green) to maximize pDEP force while preventing trapping. Focusing of the cells in the
center of the channel (50 pm away from orifice, black) leads to cells experiencing insufficient electric field
causing low pDEP, while focusing closer to the orifice (25 um away from orifice, red) leads to exposure to
high electric field leading to trapping and subsequent cell death.
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Fig S3: Live-Dead Staining of cells in each outlet with E-Field OFF and E-Field ON: A) Under E-field
off conditions the 10.72% live cells were all collected in the no-DEP outlet (725 cells) with very few (4
cells) in the pDEP outlet. B) With the E-field on, the input of 10.72% was enriched to 48.85% in the pDEP
outlet with ~75% of the live cells (973) collected in the pDEP outlet.
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Fig S4: Representative distribution and GFP based viability of adherent and circulating cells (2 well
plates of floating and adherent) in each outlet after collection for 15 mins at the optimized conditions
of 25V, 1IMHz: A) The distribution of live (GFP+) and dead cells (GFP-) in each outlet shows that majority
of live cells are deflected to the pDEP outlet and at 25 V, 1 MHz. B) The viability of collected cells (GFP+)
is enriched from 55% in the input to 75% in the pDEP outlet.

S-3



A) Total 3754

3707 54 9440 397
Cell #s Dead 3652 3608 51 9352 254
Live 102 99 3 88 143
L]
s ElLive Cells
- 100f —— — [IDead Cells
3
Q 80
L]
>
‘= 60
<
o
g’n 40
3
5 20
I
v 0 _
& N Q2 2 Q2 2
& & & & &
N &© < © <
\_r—l \—V—‘
OFF ON

B)

Viability
3 »n w B o [-2]
o o o o o o

o

36%

Fig S5: Representative distribution and GFP based viability of floating cells only in each outlet after
collection for 25 mins at the optimized conditions of 25 V, 1IMHz: A) The distribution of live (GFP+)
and dead cells (GFP-) in each outlet shows that majority of live cells are deflected to the pDEP outlet and
at 25V, 1 MHz. B) The viability of collected cells (GFP+) is enriched from ~3% in the input to 36% in the

pDEP outlet.
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Fig. S6: Collected cell #s
in 15 minutes to compare
live cell enrichment after
pDEP vs. DLD methods.
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Fig. S7: Circulating cell numbers and sizes. A. Number of live circulating
cells in media increases after 48 h gemcitabine treatment (1 pug/mL) vs.
control (untreated with ~500 live events). Size comparison: B. FSC Flow
Cytometry; C-D. Electrical size from impedance cytometry of 3% live
circulating cell input sample used for results in Figure 5 of manuscript.

Movie 1: Movie showing the inlets, active region, cell deflection into pDEP and noDEP
outlets under E-Field OFF and E-Field ON: Cells are focused using sample and sheath flows
to enter the active region consisting of posts and orifices. Under E-Field OFF, cells pass
undeflected into the no DEP outlet with no cells entering pDEP outlet, while with E-Field ON, cells
are deflected to the pDEP outlet based on viability status.
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B. Supplementary Methods

1. Machine learning for optimizing impedance metrics to gate live vs. dead PDAC cells:
The support vector machine (SVM) supervised learning model was utilized to train
impedance metrics with known samples of dead (heat treated) and live (untreated) PDAC
cells. Per the gates and associated confusion matrices in Fig. S6, the specific metrics that
distinguish live vs. dead cells were identified to arise from comparison of impedance phase
(¢2) at low frequency (0.5 MHz) to that at high frequency (18 MHz or 30 MHz); i.e., Fig. S6
A and S6B. These metrics were used to compute the hyperplane (line in 2D plot) for label-
free gating of live vs. dead PDAC cells.
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Fig S8: Using Supporting Vector Machine(SVM) with linear kernel to classify dead vs live
cells. A) Using phase at 18 MHz and 0.5 MHz, B) Phase at 30 MHz and 0.5 MHz, C) Phase at 2
MHz and 0.5 MHz, D) Electrical size vs phase at 0.5 MHz, E) Opacity (|Z1s wrz|/|Zo.5 mHz|) VS
electrical size, and F) Opacity (|22 whz|/|Zos wHz|) VS electrical size.

2. Dielectric Shell Modelling

For a cell suspended in a dielectric medium, the dielectric properties of the suspension can be
determined using Maxwell’'s Mixture theory by calculating the complex permittivity of the
suspension (&,;,)- To calculate the dielectric properties of the suspended cell, MMT-based shell
models can be used. For the sake of simplification, the cell is modelled as a series of concentric
shells, each with its own defined dielectric properties. The simplest model of a cell, a single shell
model has two dispersions at its interfaces (medium-membrane and membrane-interior). The
complex permittivity of the suspension (&) is:
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where &,,.4ium IS the complex permittivity of the surrounding medium, ¢ is the volume fraction of
the particle in the medium and f,, is the Clausius-Mossotti factor of the cell in the mixture. & can
be defined as:

(1)

E=gge—j= (2)
where ¢ is the permittivity, ¢, is the constant permittivity in vacuum, o is the conductivity, w is the
frequency of the applied electric field and j?= -1.
For a shell model, the Claussius-Mosotti factor of the cell in the mixture (f¢),) is given by:
5cell B 5medium

M= 3% o 3
Ecel T 2&medium

The complex permittivity of the cell (¢..;;) in a single shell model can be modelled as:

)/3 +2 Einterior — Emembrane

5 _ = Einterior T 2Emembrane 4
€cell = €membrane z. I €))
y3 — (Sinterior membrane
Einterior + ngembrane
with;
Tcell
y = ()

Teetl — Amembrane

where 1. is the radius of the cell and d,,,emprane 1S the thickness of the cell membrane. With the
calculation of the complex permittivity of the suspension (&), the impedance of the mixture
(Zmix) can be calculated as:

- 1

Zmix

(6)

B ngmixG
where G is the geometric constant of the system, and can be approximated as:
Aelectrode

/delectrode (7)

where Agjectrodqe 1S the surface area of the electrode and dgjeciroqe 1S the distance between the
electrodes. Since Z,,,;, is frequency dependent, relaxation curves for impedance magnitude (|Z|)
and phase (¢Z) can be calculated using:

|Z] = \/Re(Zmix)z + Irn(znmix)2 (8)
1 Im(Zinix)
Re(Zmix)

where Re(Z,,;,) and Im((Z,,; ) are the real and imaginary parts of the complex impedance of the
mixture (Zpy)-

¢Z = tan~ 9
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Fig S9: Single shell model of cell based on Maxwell’s mixture theory.

Table S1: Fitting parameters for simulating cell dielectric dispersions

Vaccuum permittivity (g;) 8.85x 1072 F m™’
Medium conductivity (oeqium) 1.6 S/m
Medium permittivity (gneqium) 80

Membrane Conductivity (6,,embrane) 103-10°% S/m
Membrane Permittivity (¢nembrane) 5.87
Interior Conductivity (Ginterior) 0.005-0.5 S/m
Interior Permittivity (¢interior) 60
Cell Radius (7.¢;;) 8.5 um
Membrane Thickness (dyembrane) 14
Surface Area of electrode (Agectrode) 10° m?
Distance between electrodes (dgjectrode) 60 x 107 m

Based on this, the dielectrophoretic force (Fpzp) experienced by the cells due to their polarization
in a non-uniform electric field can be calculated as:

Fpgp = 27T“Emediumrcell3Re(fc'M)(VEZ) (10)
where VE? is the Laplacian operator of the applied electric field squared.
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