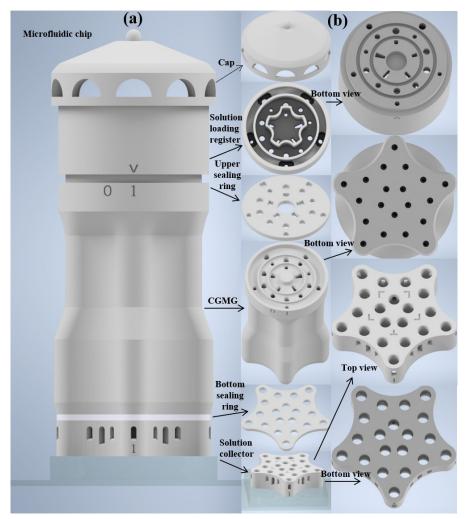
Electronic Supplementary Material (ESI) for Lab on a Chip. This journal is © The Royal Society of Chemistry 2024

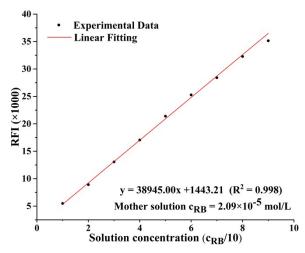
Supplementary Information

High-throughput 3D microfluidic chip for generation of concentration gradients and solution combinations

Mingwei Zhao^a, Jing Yang^b, Yuang Zeng^c, Zhenqing Li^a, Bo Dai^a, Chunxian Tao^{*,a}, Dawei Zhang^a and Yoshinori Yamaguchi^d


^aEngineering Research Center of Optical Instrument and System, Key Lab of Optical Instruments and Equipment for Medical Engineering, Ministry of Education, Shanghai Key Lab of Modern Optical System, University of Shanghai for Science and Technology, Shanghai 200093, China ^bAnhui Sanlian University, Hefei 230000, China ^cShanghai Key Laboratory of Molecular Imaging, Shanghai University of Medicine and Health

Sciences, Shanghai 201318, China


^dComprehensive Research Organization, Waseda University, Tokyo, Japan. 162-0041

Corresponding Authors: *Chunxian Tao, <u>tao@usst.edu.cn</u>.

Supplementary Figures:

Fig. S1 Rendering of the external surface of the microfluidic device and its components. (a) 3D rendering of the surface of the microfluidic device. (b) Rendering of the outer surface of each component.

Fig. S2 Configure the linear fitting graph of the solubility value and the fluorescence intensity of the concentration gradient Rhodamine B fluorescent dye. (Where x represents the relative concentration of the Rhodamine B solution (in units of c_{RB}), and y denotes the fluorescence

intensity.)

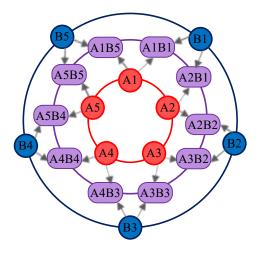


Fig. S3 Inefficient model of mixed structure of gradient solution.

Fig. S4 The chip verification completes the physical map.

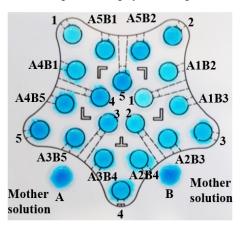


Fig. S5 Image of blue ink solution produced by the chip.

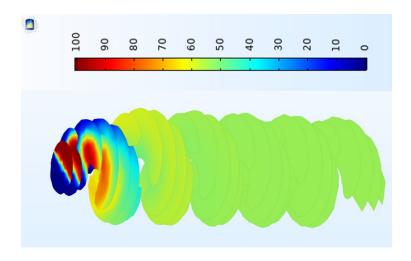


Fig. S6 The simulation of the fluid dynamics was performed for the spiral channels in the chip. A thermal color plot of the concentration distribution when the diffusion coefficient is 4.5×10^{-10} m²/s.

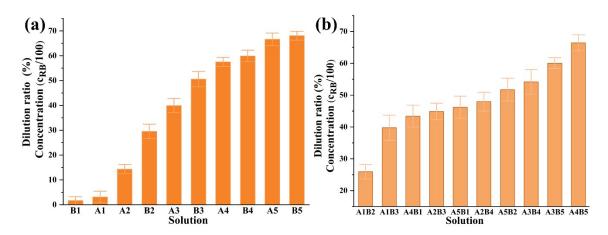


Fig. S7 Single solution loading scheme: (a)(b) Concentration diagram of diluted solutions.

Supplementary Tables:

Table S1 Physical properties table of 3D printed biological application materials.

	Biological application						
Photosensitive resin	BIO	PEGDA					
The tensile strength	42MPa	1MPa					

Modulus of elasticity	2.4GPa	35MPa
Elongation at break	2.5%	3.5%
The bending strength	65MPa	-
Bending modulus	2GPa	-
Thermal deformation	100°C	40°C
temperature @0.45MPa		
Hardness	80 Shore D	27 Shore D
The standard color	Translucent yellow	Translucent yellow, black
other	Biocompatibility	Biocompatible, low
		modulus materials

Table S2 Gradient solution mixing group table.

Solution combination											
AIBI	A1B2	A1B3	A1B4	A1B5							
A2B1	A2B2	A2B3	A2B4	A2B5							
A3B1	A3B2	A3B3	A3B4	A3B5							
A4B1	A4B2	A4B3	A4B4	A4B5							
A5B1	A5B2	A5B3	A5B4	A5B5							

Table S3 The concentration of Am and Bn and the ratio of solution to volume.

Solution	A1	A2	A3	A4	A5	B1	B2	B3	B4	В5
Concentration (c _{RB} /100)	33.4	42.5	60.1	85.7	96.9	31.9	40.1	49.4	70.5	98.3
<i>V_{r(/100)}</i>	33.4	42.5	60.1	85.7	96.9	31.9	40.1	49.4	70.5	98.3

I uble 81	Tuble of Thinbh concentration and maxing volume ratio.											
Solution	A1B4	A1B5	A2B5	A2B1	A3B1	A3B2	A4B2	A4B3	A5B3	A5B4		
Concentration (c _{RB} /100)	48.28	53.79	56.59	33.57	39.97	45.83	52.05	55.13	60.23	74.06		
$V_{r(A_m)}$	0.599	0.686	0.747	0.155	0.285	0.286	0.262	0.158	0.228	0.136		
$V_{r(B_n)}$	0.402	0.314	0.253	0.846	0.715	0.714	0.738	0.842	0.772	0.865		

Table S5 Solutions A and B were loaded into the inner and outer ring chambers respectively

 to generate solutions and their concentrations.

	The solution produced by the chip											
Solution	A1	A2	A3	A4	A5	B1	B2	B3	B4	B5		
Concentration $(c_A \text{ or } c_B/100)$	33.4 ±2.5	42.5 ±1.8	60.1 ±2.9	85.7 ±1.9	96.9 ±2.3	31.9 ±1.8	40.1 ±2.4	49.4 ±3.1	70.5 ±2.9	98.3 ±1.6		
Solution	A1B4	A1B5	A2B5	A2B1	A3B1	A3B2	A4B2	A4B3	A5B3	A5B4		
A Concentration (c _A /100)	20.0 ±1.5	22.9 ±1.7	31.8 ±1.4	6.6 ±0.3	17.2 ±0.8	17.2 ±0.8	22.5 ±0.5	13.5 ±0.3	22.1 ±0.5	13.1 ±0.3		
B Concentration (c _B /100)	28.3 ±1.2	30.9 ±0.5	24.8 ±0.4	27.0 ±1.5	22.8 ±1.3	28.6 ±1.7	29.6 ±1.7	41.6 ±2.6	38.2 ±2.4	60.9 ±2.5		

Table S6 Solutions A and B were loaded into the outer and inner ring chambers respectively to generate solutions and their concentrations.

	The solution produced by the chip												
Solution	A1	A2	A3	A4	A5	B1	B2	B3	B4	B5			
Concentration	31.9	40.1	49.4	70.5	98.3	33.4	42.5	60.1	85.7	96.9			
(c_A or $c_B/100$)	± 1.8	±2.4	±3.1	±2.9	±1.6	±2.5	± 1.8	±2.9	±1.9	±2.3			
Solution	A4B1	A5B1	A5B2	A1B2	A1B3	A2B3	A2B4	A3B4	A3B5	A4B5			
A solution concentration $(c_A/100)$	28.3 ±1.2	30.9 ±0.5	24.8 ±0.4	27.0 ±1.5	22.8 ±1.3	28.6 ±1.7	29.6 ±1.7	41.6 ±2.6	38.2 ±2.4	60.9 ±2.5			
B solution concentration (c _B /100)	20.0 ±1.5	22.8 ±1.7	31.8 ±1.4	6.6 ±0.3	17.1 ±0.8	17.2 ±0.8	22.5 ±0.5	13.5 ±0.3	22.1 ±0.5	13.1 ±0.3			

Table S7 Injection of dilution solution into the outer and inner ring chambers, and mother liquor with a concentration of c_{RB} into the central ring chamber. There are the concentrations of the generated solutions.

	The concentration of Am, Bn, and AmBn											
Solution	A1	A2	A3	A4	A5	B1	B2	B3	B4	B5		
Concentration $(c_{RB}/100)$	3.1 ±2.3	14.3 1.9	39.9 ±2.9	57.5 ±1.8	66.6 ± 2.5	1.7 ±1.6	29.5 ±2.9	50.6 ±3.1	59.9 ±2.4	68.1 ±1.8		
Solution	A1B2	A1B3	A2B3	A2B4	A3B4	A3B5	A4B5	A4B1	A5B1	A5B2		
	25.9	39.8	44.9	48.0	54.2	60.0	66.4	43.4	46.2	51.7		
Concentration $(c_{RB}/100)$	±2.3	±4.0	±2.6	±2.9	±3.9	±1.7	±2.5	±3.4	±3.5	±3.6		

Injection of solution A and B into the outer and inner ring chambers respectively, and solution C into the central ring chamber:

 Table S8 The concentration of ABC.

The solution of ABC												
Solution	1	2	3	4	5	6	7	8	9	10		
Concentration (c _A /100)	13.1	60.9	22.1	38.2	31.8	24.8	13.5	41.6	22.9	30.9		
Concentration (c _B /100)	60.9	13.1	38.2	22.1	24.8	31.8	41.6	13.5	30.9	22.9		
Concentration (c _C /100)	25.9	25.9	39.8	39.8	43.4	43.4	44.9	44.9	46.2	46.2		
Solution	11	12	13	14	15	16	17	18	19	20		
Concentration (c _A /100)	22.5	29.6	20.0	28.3	17.2	28.6	17.1	22.8	6.6	27.0		
Concentration (c _B /100)	29.6	22.5	28.3	20.0	28.6	17.2	22.8	17.1	27.0	6.6		
Concentration (c _C /100)	48.0	48.0	51.7	51.7	54.2	54.2	60.0	60.0	66.4	66.4		
Table S9 T	he conc	entratior	n of AC a	and BC.								
			The	solution	of AC o	r BC						

Solution	1	2	3	4	5	6	7	8	9	10
Concentration $(c_A \text{ or } c_B / 100)$	98.3	96.9	85.7	70.5	60.1	49.4	42.5	40.1	33.4	31.9
Concentration (c _B /100)	1.7	3.1	14.3	29.5	39.9	50.6	57.5	59.9	66.6	68.1