Electronic Supplementary Material (ESI) for Lab on a Chip. This journal is © The Royal Society of Chemistry 2024

Supplementary Information

A microfluidic microalgae detection system for cellular physiological response based on object detection algorithm

Shizheng Zhou a, d, Tianhui Chen a, Edgar S Fu b, Teng Zhou c, Liuyong Shi c and Hong Yan a, d *

a. State Key Laboratory of Marine Resource Utilization in South China Sea, Hainan University, Haikou 570228, China.

b. Graduate School of Computing and Information Science, University of Pittsburgh, PA 15260, USA

Content:

Table S1. Detection performance of each trick after model optimization.

- Fig. S1. The microfluidic chip schematic diagram
- Fig. S2. Cell activity after adding sorbitol
- Fig. S3. The structure of Bi-Level Routing Attention
- Fig. S4. The training and validation loss of the optimized model
- Fig. S5. The confusion matrix of the baseline model

Table. S1	Detection	performance	after model	optimization.
-----------	-----------	-------------	-------------	---------------

Data Aug	Optimizer	Act Func	Loss Func	Architecture	Plat	Chlo	Duna	Sym	Porp	Нае	mAP
None	SGD	SiLU	CloU	YOLOv8n (baseline)	0.890	0.475	0.848	0.983	0.967	0.989	0.859
Mosaic	SGD	SiLU	CloU	YOLOv8n	0.934	0.696	0.883	0.982	0.978	0.984	0.909
MixUp	SGD	SiLU	CloU	YOLOv8n	0.931	0.553	0.865	0.973	0.970	0.986	0.88
Both	SGD	SiLU	CloU	YOLOv8n	0.967	0.711	0.934	0.991	0.978	0.992	0.929
Both	Adam	SiLU	CloU	YOLOv8n	0.946	0.653	0.923	0.987	0.980	0.991	0.913
Both	RMSProp	SiLU	CloU	YOLOv8n	0.928	0.615	0.932	0.985	0.976	0.984	0.903
Both	SGD	ReLU	CloU	YOLOv8n	0.945	0.719	0.941	0.990	0.969	0.987	0.925
Both	SGD	Leaky ReLU	CloU	YOLOv8n	0.946	0.717	0.942	0.981	0.979	0.991	0.926
Both	SGD	ELU	CloU	YOLOv8n	0.939	0.726	0.949	0.989	0.970	0.992	0.928
Both	SGD	ELU	SloU	YOLOv8n	0.934	0.749	0.936	0.991	0.982	0.986	0.930
Both	SGD	ELU	Focal_EloU	YOLOv8n	0.960	0.762	0.953	0.992	0.974	0.991	0.939
Both	SGD	ELU	GloU	YOLOv8n	0.937	0.742	0.953	0.990	0.982	0.985	0.932
Both	SGD	ELU	DIoU	YOLOv8n	0.956	0.752	0.942	0.991	0.982	0.990	0.936
Both	SGD	ELU	Focal_EloU	YOLOv8n + p2	0.925	0.845	0.960	0.979	0.980	0.961	0.942
Both	SGD	ELU	Focal_EloU	YOLOv8n + p2 + BiLRA	0.949	0.873	0.937	0.988	0.983	0.983	0.952

The bolded text indicates the way in which the model detection performance is most improved among the various tricks in this column. *Plat*: Platymonas; *Chlo*: Chlorella; *Duna*: Dunaliella salina; *Sym*: Symbiodinium; *Porp*: Porphyridium; *Hae*: Haematococcus; Both: Mosaic + MixUp; BiLRA: Bi-Level Routing Attention

Fig. S1 The microfluidic chip schematic diagram

Fig. S2 Cell activity after adding sorbitol. the "control" group represents cell samples treated with sorbitol. Under the same culture conditions, the measurements of maximum photosynthetic efficiency in samples with added sorbitol are nearly identical to the original samples. Moreover, after 4 days, there is a slight increase in activity.

Fig. S2 The structure of Bi-Level Routing Attention ¹. (a) The schematic diagram of Bi-Level Routing Attention; (b) Details of the BiFormer block

Reference

1. L. Zhu, X. Wang, Z. Ke, W. Zhang and R. Lau, *Journal*, 2023, DOI: 10.48550/arXiv.2303.08810, arXiv:2303.08810.

Fig. S3 The training and validation loss of the optimized model

Fig. S4 The confusion matrix of the baseline model