Supporting Information for

A Microfluidic Impedance Cytometry with Flat-end Cylindrical Electrodes for Accurate and Fast Analysis of Marine Microalgae

Xiaoming Chen, *^{a, b} Mo Shen, ^{a, b} Shun Liu, ^{a, b} Chungang Wu, ^{a, b} Liangliang Sun, ^{a, b} Zhipeng Song, ^{a, b} Jishun Shi, ^{a, b} Yulong Yuan, ^{a, b} and Yong Zhao *^{a, b}

^aSchool of Control Engineering, Northeastern University at Qinhuangdao, Qinhuangdao 066004, PR China. E-mail: chenxiaoming@neuq.edu.cn ^bHebei Key Laboratory of Micro-Nano Precision Optical Sensing and Measurement Technology, Qinhuangdao, 066004, PR China. E-mail: zhaoyong@ise.neu.edu.cn.

Section 1: Method of numerical simulation

We conducted the numerical simulation using the software of Comsol Multiphysics 6.0. We firstly established the simulation model, and the flat-end cylindrical electrodes were equivalent to two circle surfaces on the both sides of the fluid domain. The microalgae were equivalent to 3D spindle. We selected the module of Electric Currents to investigate the impedance change of microalgae when they travel through the detection zone. The left flat-end cylindrical electrode was employed an excited voltage as the terminal with the amplitude

$$V = V_0 \tag{S1}$$

The right flat-end electrode was grounded with the amplitude of

$$V = 0 \tag{S2}$$

The surfaces of the microalgae were employed the contact impedance

$$n \cdot J_1 = \frac{1}{d_s} (\sigma + j\omega\varepsilon_0\varepsilon_r) (V_1 - V_2)$$
(S3)

$$n \cdot J_2 = \frac{1}{d_s} (\sigma + j\omega\varepsilon_0\varepsilon_r) (V_2 - V_1)$$
(S4)

The fluid in the detection zone was required to comply with current conservation:

$$\nabla \cdot J = Q_{j,V} \tag{S5}$$

$$J = \sigma E + j\omega D + J_e \tag{S6}$$

$$E = -\nabla V \tag{S7}$$

The initial potential of the detection zone is set to

$$V_{initial} = 0 \tag{S8}$$

We choose the frequency domain to investigate the impedance of the microalgal cells. According to the computation results, we input the equation of cell impedance and take the position of cell along X coordinate as sweep parameters. In this way, we can simulate the change of cell impedance in the dynamic detection. We changed the distance between microalgae and detection zone center in the microchannel to simulate the travel process of microalgae in the detection.

Table S1 Physical and geometrical parameters in numerical simulation.

Parameters Value		Implication				
L	400 μm	Length of detection channel				
W	40 µm	Width of detection channel				
Н	81 μm	Height of detection channel				
R	40 µm	Radius of the flat end electrode				
R _c	3.4 μm	Radius of microalgae				
L _c	36 µm	Length of microalgae				

σ_m	0.2 S/m	Conductivity of the solution		
ε _m	80	Relative permittivity of the solution		
$ ho_m$	1000 kg/m ³	Density of the solution		
μ	0.0000055	Dynamic viscosity of the solution		
ε _c	60	60 Relative permittivity of the cells		
σ_c	0.65	Conductivity of the cells		
$ ho_c$	1000 kg/m ³	Density of the cells		
φ	0~1	Volume fraction of cells		
k	80~200	Cell constant		
D	36 µm	Effective size of cells		

Section 2: Impedance signals of different-size cells

Figure.S1 Impedance signals of different-size cells.

Figure.S2 Numerical simulation to investigate the effect of wire channel space on the flow distribution. (a/c) Flow field distribution in the detection zone with/ without wire channel space. (b/d) Velocity of fluid along X coordinate in the detection zone with/ without wire channel space.

Figure.S3 Impedance signals of *Haematococcus pluvialis* under different ion concentrations. (a) 2.05x10⁻⁶ mol/mL. (b) 4.06x10⁻⁶ mol/mL. (c) 6.77x10⁻⁶ mol/mL. (d) 1.05x10⁻⁵ mol/mL. (e) 1.35x10⁻⁵ mol/mL. (f) Micrograph of *Haematococcus pluvialis*.

Section 5: Micrographs of *Euglena* cells under different ion concentrations

Figure.S4 Micrographs of *Euglena* under different ion concentrations. (a) 2.05×10^{-6} mol/mL. (b) 4.06×10^{-6} mol/mL. (c) 6.77×10^{-6} mol/mL. (d) 1.05×10^{-5} mol/mL. (e) 1.35×10^{-5} mol/mL.

Figure.S5 Impedance of Haematococcus pluvialis under different applied voltages. (a) A=0.5 V. (b) A=1 V. (c) A=1.25 V. (d) A=1.5 V. (e) A=1.75 V. (f) A=2 V.

Section 7: Impedance signals of *Haematococcus pluvialis* at different cell density

Figure S6 Impedances of *Haematococcus pluvialis* at different concentration. (a) 100 cells/ μ L. (b) 200 cells/ μ L. (c) 400 cells/ μ L.

Section 8: Impedance signals of *Haematococcus pluvialis* in the microfluidic impedance cytometry with different electrode gap

Figure.S7 Influence of electrode gap on the impedance signals of microalgae. (a-c) Micrograph of the detection zone in the device with electrode gap of 60 μ m, 40 μ m and 30 μ m. (d-f) Impedance signals of *Haematococcus pluvialis* detected in three devices at the ion concentration of 1.05×10^{-5} mol/mL. (g-i) Impedance signals of *Haematococcus pluvialis* detected in three devices at the ion concentration of 1.35×10^{-5} mol/mL.

Section 9: Comparation with other microfluidic impedance cytometry

systems for detection of microalgae

Table S2 Comparation with other microfluidic impedance cytometry systems for detection of microalgae

Electrode	Materials of	Fabrication of	Throughput	Applied species	Reference
structure	electrodes	electrodes			
Planar electrode	Cr/Au electrodes	Sputtering and standard	900 cells/s	Euglena	Reference ¹
		photolithography			
		techniques			
Planar electrode	Cr/Au electrodes	Sputtering and standard		Euglena	Reference ²
		photolithography			
		techniques			
Planar electrode	Cr/Au electrodes	Sputtering and standard	1500 cells/s	Euglena	Reference ³
		photolithography			
		techniques			
Planar electrode	Cr/Au electrodes	Sputtering and standard		Euglena	Reference ⁴
		photolithography			
		techniques			
Planar eletrode	Au electrodes	Sputtering and standard		Picochlorum SE3	Reference ⁵
		photolithography			
		techniques			
Planar eletrode	Ti:Au:Ti	Sputtering and standard		lsochrysis galbana,	Reference ⁶
		photolithography		Synechococcus sp.	
		techniques		Rhodosorus m.	
Planar eletrode	tantalum/platinum			Emiliania huxleyi	Reference 7
3D electrode	Copper electrodes			D. Salina	Reference ⁸
Flat-end cylindrical	Stainless steel	Grinding process	1800 cells/s	Haematococcus	This work
electrode	wires			pluvialis	
				Euglena	
				Oocystis sp	

Section 10: Detection of Haematococcus pluvialis using PBS solution

Figure.S8 Impedance signals of *Haematococcus pluvialis* in the PBS solution.

Section 11: Detection of *Haematococcus pluvialis*

Video S1 Impedance signals of *Haematococcus pluvialis* at A=1 V, f=500 kHz and $Q=10 \text{ }\mu\text{L/min}$.

Reference

- 1. T. Tang, X. Liu, Y. Yuan, R. Kiya, Y. Shen, T. Zhang, K. Suzuki, Y. Tanaka, M. Li, Y. Hosokawa and Y. Yalikun, *Lab on a chip*, 2022, **22**, 550-559.
- 2. T. Tang, X. Liu, R. Kiya, Y. Shen, Y. Yuan, T. Zhang, K. Suzuki, Y. Tanaka, M. Li, Y. Hosokawa and Y. Yalikun, *Biosensors and bioelectronics* 2021, **193**.
- 3. T. Tang, X. Liu, Y. Yuan, T. Zhang, R. Kiya, K. Suzuki, Y. Tanaka, M. Li, Y. Hosokawa and Y. Yalikun, *Sensors and Actuators B: Chemical*, 2022, **358**.
- 4. T. Tang, X. Liu, Y. Yuan, T. Zhang, R. Kiya, Y. Yang, K. Suzuki, Y. Tanaka, M. Li, Y. Hosokawa and Y. Yalikun, *Microsyst nanoeng* 2022, **8**, 68.
- 5. J. Sui, F. Foflonker, D. Bhattacharya and M. Javanmard, *Sci rep* 2020, **10**, 1251.
- 6. G. Benazzi, D. Holmes, T. Sun, M. C. Mowlem and H. Morgan, *IET Nanobiotechnol*, 2007, **1**, 94-101.
- 7. D. S. de Bruijn, P. M. Ter Braak, D. B. Van de Waal, W. Olthuis and A. van den Berg, *Biosens bioelectron* 2020, **173**, 112808.
- 8. Y. X. Song, M. Q. Li, J. D. Yang, J. S. Wang, X. X. Pan, Y. Q. Sun and D. Q. Li, *Sensors and actuators b-chemical* 2014, **194**, 164-172.