Smart salt-responsive thread for highly sensitive

microfluidic glucose detection in sweat

Liang Wu,^{ab} Jing Xiong,^{ab} Gang Xiao,^{ab} Jun Ju,^{ab} Wei Sun,^c Wei Wang,^d Yan Ma,^e Ruilong Ran,^e Yan Qiao,^{ab} Changming Li,^f Ling Yu^{*ab} and Zhisong Lu^{*ab}

^a Key Laboratory of Luminescence Analysis and Molecular Sensing, Ministry of Education, School of Materials & Energy, Southwest University, Chongging 400715, P. R. China

^b Institute for Clean Energy & Advanced Materials, School of Materials & Energy, Southwest University, Chongqing 400715, P. R. China

^c Key Laboratory of Laser Technology and Optoelectronic Functional Materials of Hainan Province, College of Chemistry and Chemical Engineering, Hainan Normal University, Haikou 571158, P. R. China

^{*d*} Singapore Institute of Manufacturing Technology, Singapore 138669, Singapore

^e College of Sericulture, Textile and Biomass Sciences, Southwest University, Chongqing 400715, P. R. China

^{*f*} School of Materials Science and Engineering, Suzhou University of Science and Technology, Suzhou 215011, P. R. China.

*Corresponding authors: E-mail: zslu@swu.edu.cn (Z. S. Lu) or lingyu12@swu.edu.cn (L. Yu); Tel.: +86-23-68254732; Fax: +86-23-68254969.

Figure S1. Smartphone-based data collecting system.

Figure S2. SEM images of the pristine (a) and PSBMA-modified (b) cotton threads.

Figure S3. Cross-sectional SEM images of the pristine thread and PSBMA-thread.

Figure S4. XPS S2p spectra of PSBMA-thread.

Figure S5. Antibacterial effects of pristine cotton thread and PSBMA-modified thread.

Figure S6. Working principle of the GOD/HRP/TMB-based colorimetric sensors.

Figure S7. Performance of the paper-based colorimetric glucose sensor.

Figure S8. Effects of the reaction duration on the color intensity of the paper-based sensors.

Figure S9. Photos of the corresponding paper sensing units after glucose sensing.

Figure S10. Effects of the ionic strength on the color intensity of the paper-based sensors.

Figure S11. Performance of the microfluidic thread/paper-based glucose sensing systems in different solutions (a). A comparison of the performance of glucose sensors for body fluid (b).

Figure S12. Color intensity against glucose concentration in terms of the R-, G-, and B-value.

	PSBMA- thread/glucose- water	Pristine- thread/glucose- water	PSBMA- thread/glucose- sweat	Pristine- thread/glucose- sweat
Intercept	205	207	202	201
Adj. R-Square	0.981	0.984	0.989	0.986
LOD/µM	19.1	35.1	14.7	27.4
Sensitivity/µM ⁻	-0.222	-0.153	-0.255	-0.164

Table S1. Parameters for the calibration curves.

Table S2. Recovery ratio of the thread-based microfluidic sensors.

Thread	Spiked concentration/µM (glucose)	μTPAD assay (μM)(mean ± SD, n=3)	Recovery/% (mean ± SD, n=3)	Coefficient of variation/% (CV)
PSBMA- thread	50	48.7±0.4	97.4±0.7	0.8
	150	150.3±1.5	100.2±1.0	1.0
	250	247.8±1.8	99.1±0.7	0.7
Pristine thread	50	49.5±0.6	99.0±1.1	1.1
	150	148.4±1.2	98.9±0.8	0.8
	250	246.3±1.5	98.5±0.6	0.6

Figure S13. Regeneration of the PBMSA-modified threads in the microfluidic system.

Figure S14. (a) Preparation of the glucose sensing headband; (b) Photos of the headband worn on the forehead during exercise.

Materials and Substrate	Enzyme and chromogenic reagent	LOD	Detection range	Sensitivity	Test sample	Refere nce
PDMS	GOD/HRP/o- dianisidine	30 µM	0.1–0.5 mM	111.23 mM ⁻¹	Sweat	1
PDMS	GOD/AuNCs/ODA	21 µM	0.05–1.6 mM	0.469 dec(mM) ⁻¹	Sweat	2
BC/CMC hydrogel	GOD/HRP/KI	25 μΜ	0.025–0.5 mM	Not given	Sweat	3
PVA/sucrose hydrogel	GOD/HRP/4- aminoantipyrine	Not given	0–2 mM	Not given	Sweat	4
TiO ₂ nanotubes/alginate hydrogel	GOD/HRP/TMB	44 μΜ	0.1-0.8 mM	83.678 mM ⁻¹	Sweat	5
Cotton cloth	GOD/HRP/TMB	1700 µM	3.0-15.0 mM	53.963 dec(mM) ⁻¹	Serum	6
Filter paper	GOD/HRP/TBHBA/4 -AAP	300 µM	1.0-11.0 mM	0.5238 mM ⁻¹	Serum	7
Filter paper	GOD/HRP/TMB	14 µM	0.02-4.0 mM	108.06 dec(mM) ⁻¹	Serum /Tear	8
Filter paper	GOD/HRP/4-AAP/ DHBS	50 μΜ	0.05–0.3 mM	200.9 mM ⁻¹	Sweat	9
Cotton thread	GOD/HRP/KI	100 µM	0.1–5.0 mM	8.28 mM ⁻¹	Tear	10
Cotton thread	GOD/HRP/KI	100 µM	0.1–3 mM	34.455 mM ⁻¹	Sweat	11
Cotton thread/paper	GOD/HRP/TMB	35 µM	0.05–0.25 mM	190 mM ⁻¹	Sweat	12
PSBMA thread/paper	GOD/HRP/TMB	14.7 μM	0.025–0.25 mM	255 mM ⁻¹	Sweat	This work

Table S3. Summary of glucose colorimetric sensors in body-fluid analysis

Reference

- J. Xiao, Y. Liu, L. Su, D. Zhao, L. Zhao and X. Zhang, *Anal. Chem.*, 2019, 91, 14803-14807.
- 2. X. Mei, J. Yang, J. Liu and Y. Li, Chem. Eng. J., 2023, 454, 140248.
- 3. T. Siripongpreda, B. Somchob, N. Rodthongkum and V. P. Hoven, *Carbohydr. Polym.*, 2021, **256**, 117506.
- 4. L. Wang, T. Xu, X. He and X. Zhang, J. Mater. Chem. C, 2021, 9, 14938-14945.
- 5. U. B. Gunatilake, S. Garcia-Rey, E. Ojeda, L. Basabe-Desmonts and F. Benito-Lopez, *ACS Appl. Mater. Interfaces*, 2021, **13**, 37734-37745.
- 6. B. Tasaengtong and Y. Sameenoi, *Microchem. J.*, 2020, **158**, 105078.
- 7. W. J. Zhu, D. Q. Feng, M. Chen, Z. D. Chen, R. Zhu, H. L. Fang and W. Wang, *Sens. Actuators, B*, 2014, **190**, 414-418.
- X. Wang, F. Li, Z. Cai, K. Liu, J. Li, B. Zhang and J. He, *Anal. Bioanal. Chem.*, 2018, 410, 2647-2655.
- 9. Z. Zhang, M. Azizi, M. Lee, P. Davidowsky, P. Lawrence and A. Abbaspourrad, *Lab Chip*, 2019, **19**, 3448-3460.
- P. Punnoy, P. Preechakasedkit, C. Aumnate, N. Rodthongkum, P. Potiyaraj and N. Ruecha, *Mater. Lett*, 2021, 299, 130076.
- N. Promphet, J. P. Hinestroza, P. Rattanawaleedirojn, N. Soatthiyanon, K. Siralertmukul, P. Potiyaraj and N. Rodthongkum, *Sens. Actuators, B*, 2020, 321, 128549.
- G. Xiao, J. He, X. Chen, Y. Qiao, F. Wang, Q. Xia, L. Yu and Z. Lu, *Cellulose*, 2019, 26, 4553-4562.