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1. Yielding behaviour in planar vs. Hele-Shaw 
linear extensional flow 

It is instructive to elucidate the contrast between 2-D or planar 
extensional flow, which the cross-slot extensional rheometer 
(CSER) and Optimised Shape Cross-slot Extensional Rheometer 
(OSCER) produce at the centre, and Hele-Shaw extensional flow, 
which can be approximated for our microfluidic extensional 
flow device (MEFD). Let us consider the Bingham plastic model, 
where the material is Newtonian above a stress 𝜏௬  with a 
viscosity 𝜇, and exhibits zero shear rate at 𝜏 < 𝜏௬. Bingham 
plastic model in three-dimensional shear1 is given as  

�̇�𝒊𝒋 = 𝟎  𝐢𝐟 𝝉 < 𝝉𝒚, 𝐚𝐧𝐝 𝝉𝒊𝒋 = 𝝉𝒚

�̇�𝒊𝒋

�̇�
+ 𝝁�̇�𝒊𝒋 𝐢𝐟 𝝉 > 𝝉𝒚. (S1) 

Here, 𝜏௜௝   and �̇�௜௝  are deviatoric stress tensor and strain tensor, 
respectively. The magnitude of the strain rate, �̇�, and shear 
stress, 𝜏, are given as 

�̇� ≡ ඨ෍
𝟏

𝟐
�̇�𝒊𝒋

𝟐

𝒊,𝒋

, (S2) 

𝐚𝐧𝐝 𝝉 ≡ ඨ෍
𝟏

𝟐
𝝉𝒊𝒋

𝟐

𝒊,𝒋

. (S3) 

An ideal unbounded planar extensional flow is given as 
𝒖𝑿 = −𝑮𝑿, 𝒖𝒀 = 𝑮𝒀. (S4) 

As �̇�௜௝ =
ଵ

ଶ
(∇୧𝑢௝ + ∇୨𝑢௜), �̇�௜௝  is given as 

�̇�𝒊𝒋 = ൥
−𝑮 𝟎 𝟎
𝟎 𝑮 𝟎
𝟎 𝟎 𝟎

൩, (S5) 

where 𝐺 is a constant extensional rate.  We can evaluate �̇� using 
Eqn. S2. This comes out to be equal to 𝐺, which is constant and 
invariant of the location (𝑋, 𝑌). Thus, 𝜏௜௝  is given as  

𝝉𝒊𝒋 = ቎

−൫𝝉𝒚 + 𝝁𝑮൯ 𝟎 𝟎

𝟎 ൫𝝉𝒚 + 𝝁𝑮൯ 𝟎

𝟎 𝟎 𝟎

቏ (S6) 

We know that the rate of viscous dissipation per unit volume, 
𝜙, is given as  

𝝓 = 𝝉𝒊𝒋: 𝜵𝒊𝒖𝒋, (S7) 

and 
𝝉𝒊𝒋: 𝜵𝒊𝒖𝒋 = 𝟐𝝁𝑮𝟐 + 𝟐𝑮𝝉𝒚. (S8) 

Therefore, 𝜙 is given as  

𝝓 = 𝟐
𝝉𝒚

𝟐

𝝁

(𝟏 + 𝑩𝒏)

𝑩𝒏𝟐
, (S9) 

where 𝐵𝑛 is Bingham number, and it is defined as 

𝑩𝒏 =
𝝉𝒚

𝝁𝑮
. (S10) 

For yielding, 𝜙 has to be greater than some characteristic 𝜙௬  
close to yielding. But it is noteworthy that 𝜙 is not a function of 
position (𝑋, 𝑌), and it only depends on the values of 𝐵𝑛 and 
material properties 𝜏௬  and 𝜇. Thus, this is likely be an on-off flow 
field, where the material will either yield everywhere or unyield 
everywhere. This is different from a Hele-Shaw extensional flow 
as it will be clear soon. 
 
In contrast to the CSER and OSCER, the aspect ratio 𝛼 = 𝑑/𝑊 ≪

1 for the MEFD (𝑑 and 𝑊 are depth and width of the square 
channel in the MEFD), which enables a Hele-Shaw 
approximation of the linear extensional flow such that 𝑋 and 𝑌 
directional velocity components (see Fig.S1A for the coordinate 
system) are as follows: 

𝒖𝑿 = −𝑮𝑿 ቆ𝟏 − ൬
𝟐𝒁

𝒅
൰

𝟐

ቇ , 𝒖𝒀 = 𝑮𝒀 ቆ𝟏 − ൬
𝟐𝒁

𝒅
൰

𝟐

ቇ. (S11) 

These velocity profiles are assuming a Newtonian flow, but they 
will still be useful for at least the order of magnitude 
estimations. �̇�௜௝ is given as  
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�̇�𝒊𝒋 =

⎣
⎢
⎢
⎢
⎢
⎢
⎡−𝑮 ቆ𝟏 −

𝟒𝒁𝟐

𝒅𝟐
ቇ 𝟎

𝟒𝑮

𝒅𝟐
𝑿𝒁

𝟎 𝑮 ቆ𝟏 −
𝟒𝒁𝟐

𝒅𝟐
ቇ

−𝟒𝑮

𝒅𝟐
𝒀𝒁

𝟒𝑮

𝒅𝟐
𝑿𝒁

−𝟒𝑮

𝒅𝟐
𝒀𝒁 𝟎 ⎦

⎥
⎥
⎥
⎥
⎥
⎤

 (S12) 

In this case, �̇� is given by 𝐺𝜉, where 𝜉 =

ටቂ1 −
ସ௓మ

ௗమ
ቃ

ଶ

+
ଵ଺

ௗర
𝑍ଶ(𝑋ଶ + 𝑌ଶ). Thus, �̇� is a function of 𝑋, 𝑌, and 

𝑍, unlike the previous case of 𝐺 for unbounded planar 
extensional flow. Similarly, 𝜏௜௝  is given as 

𝝉𝒊𝒋 = ൥

𝝉𝟏𝟏 𝝉𝟏𝟐 𝝉𝟏𝟑

𝝉𝟐𝟏 𝝉𝟐𝟐 𝝉𝟐𝟑

𝝉𝟑𝟏 𝝉𝟑𝟐 𝝉𝟑𝟑

൩ (S13) 

where 𝜏ଵଵ = −
ఛ೤൬ଵି

రೋమ

೏మ ൰

క 
− 𝜇𝐺 ቀ1 −

ସ௓మ

ௗమ
ቁ, 𝜏ଵଶ = 𝜏ଶଵ = 𝜏ଷଷ = 0, 

𝜏ଶଶ =
ఛ೤൬ଵି

రೋమ

೏మ ൰

క 
+ 𝜇𝐺 ቀ1 −

ସ௓మ

ௗమ
ቁ, 𝜏ଵଷ = 𝜏ଷଵ =

ఛ೤
ర

೏మ௑௓

క 
+ 𝜇

ସீ

ௗమ
𝑋𝑍, 

and 𝜏ଷଶ = 𝜏ଶଷ = −
ఛ೤

ర

೏మ௒௓

క
− 𝜇

ସீ

ௗమ
𝑌𝑍. Like we discussed before, 

we can find 𝜙 for unbounded Hele-Shaw extensional flow. It is 
given as  

𝝓 = 𝟐
𝝉𝒚

𝟐

𝝁

൫𝑩𝒏𝝃 + 𝝃𝟐൯

𝑩𝒏𝟐
. (S14) 

Here, 𝜙 is a function of the position (𝑋, 𝑌, 𝑍), where 𝑋, 𝑌 ∈

(−∞, +∞) and 𝑍 ∈ [−𝑑/2, +𝑑/2]. When 𝑍 = 0,  we get 𝜉 = 1, 
and 𝜙 for the Hele-Shaw case converts to Eqn. S9, i.e., the 
planar extensional flow. Again, in this case, we can assume that 
there is a characteristic 𝜙௬  depicting yielding such that there 
exists a region for which 𝜙 < 𝜙௬  exhibiting solid-like behaviour, 
and 𝜙 > 𝜙௬  showing a liquid-like behaviour. 
 
To assign some approximate value of 𝜙௬  for order of magnitude 
estimates, we can use only the first part of the tensorial 
Bingham plastic model in Eqn. S7, which leads to 

𝝓𝒚 = 𝝉𝒚

�̇�𝒊𝒋

�̇�
: 𝛁𝒊𝒖𝒋. (S15) 

Assuming 𝜉~𝑂(1) closer to the center up to a distance 𝑑, 𝜙௬  is 
given as  

 𝝓𝒚 ≈ 𝟐
𝝉𝒚

𝟐

𝝁𝑩𝒏
. (S16) 

Hence, any region for which 𝜙 < 2
ఛ೤

మ

ఓ஻௡
 is the unyielded region. 

We can compare this analytical solution with the experimental 
results. For example, 0.3% carbopol exhibited 𝜏௬ ≈ 1.29 Pa 
and 𝜇 ≈ 𝑚 ≈ 2.49 Pa − s (using the Herschel-Bulkley 
parameters). Further, the extensional rate for Δ𝑃 = 241 kPa is 

𝐺 ≈
௎ೌ೟ ಾ

஽ಾషೀ
≈ 0.055 sିଵ. Thus, 𝐵𝑛 ≈ 10. Fig.S1B shows the 

contours of 𝜙 plotted on 𝑋 − 𝑌 plane. 𝜙 increases (see the 
colourbar in the figure) as we go away from the center (0,0). In 
Fig.S1C, we plot 𝜙, for the same experimental case, on 𝑋 − 𝑍 
plane at 𝑌 = 0. It turns out that the unyielded region is smaller 
at the top plane or 𝑍 = 𝑑/2, and grows in size as we move 
towards the midplane, and diverges at 𝑍 = 0, as Hele-Shaw 

flow becomes planar extensional flow at 𝑍 = 0. In our 
experiments, we captured the flow field approximately at the 
midplane. Therefore, for comparison with the theory, we want 
to pick a 𝑍 value ‘close enough’ to the centre, but not exactly at 
the centre. Thus, we arbitrarily pick 𝑍 = 𝑑/20 for Fig.S1B. We 
also show 𝜙௬  by a dotted circle. Any region within this circle 
should exhibit unyielding, and the region exterior to circle 
should be flowing. We can compare this region with the 
experimental unyielded region as shown by the square, and 
they appear to be of the same order in size. We performed 
similar comparisons between experimental and theoretical 𝑆, 

where we measured a scale of 𝐺 using ௎ೌ೟ ಾ

஽ಾషೀ
 for a range of Δ𝑃 

for 0.3% CS. We provide this comparison in Fig.S1D, which 
shows reasonable agreement between the experiment and 
theory. However, it is important to reiterate that these 
calculations serve as order of magnitude estimates to assess the 
unyielding in the unbounded Hele-Shaw flow, and comparing 
the unyielded region size with the experimental observation. In 
practice, the velocity profiles will be different from Eqn. S11, 
and the calculation of 𝜙௬  will require further refinement. 

2. Yielding behaviour in the MEFD 
We performed a simulation in COMSOL to verify our 
experimental observation that the material unyields at the 
centre. In Fig.S2A, we demonstrate the unyielded and yielded 
regions at 𝛥𝑃/𝜏௬𝑊𝑑ଶℛ௢ = 0.015. We find that there exists a 
stagnant, non-moving, and unyielded region forming at the 
stagnation point, as seen also in the experiments (see Fig.1E-G). 
We demarcate these regions in the figure using the definition of 
yielded zone in COMSOL, which is different from our definition 
of unyielding based on a strain rate criterion. Thus, the size of 
the unyielded region is likely be different numerically. But we 
can still get some qualitative information. For example, in the 
figure, we also observe another four unyielded regions at the 
four walls or sides of the square channels. Let us term them as 
‘pseudo’ regions, as they are not visible in an experiment. These 
regions are the result of no-slip boundary condition at the wall, 
which means, somewhere between the wall and the stagnation 
point, there must be a velocity maximum (which we observe to 
be at 𝑀 and 𝑁 in the experiment and simulation, see Fig.2C). 
This means that the change in the velocity is nearly zero, and 
the shear stress will be below the yield stress. But these regions 
do not really move. The fluid enters these regions, begins to 
move like a plug of a yield stress fluid flowing through a circular 
conduit, and then comes out again as yielded. This is similar to 
the discussion on Fig.1 of Denn and Bonn (2010).2 These regions 
cannot be predicted by Eqn. S14 since they are a consequence 
of four sides or walls of the channel bounding the flow. The 
unyielded region at the centre is stagnant and non-moving, and 
thus can be visualized easily using a visualization technique. 
Hence, we use it in the measurement of the yield stress. In 
Fig.S2B, we present the shear stress, 𝜏஺ି஻, plotted vs. 𝐷஺ି஻  
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(shown along the dotted line 𝐴 − 𝐵 in Fig.S2A). The yield stress 
line is shown for the reference (for 0.3% CS). As discussed in 
Section 2 of the main text, 𝜏஺ି஻ is higher at the wall or point A, 
and reduces as we move away from the wall. It drops below the 
yield stress line, and is minimum where 𝑈 is maximum. This is a 
pseudo region that exists near the side of the square. Further, 
𝜏஺ି஻  increases and becomes maximum, and further drops 
below the yield stress as we approach the stagnation point. This 
is the stagnant and unyielded region that exists at the centre. 

3. Demarcating the stagnation region 
In our experiments, we used a strain rate criterion to measure 
the size of the stagnant region, where we approximate the 
strain rate with a scale. This scale is easy and convenient to 
calculate, as compared to the complicated definition of �̇� given 
in Eqn. S2. We can show using the scaling analysis that this 
approximation is reasonable. In Hele-Shaw extensional flow in 
the MEFD, velocity 𝑢௑  and 𝑢௒  scale as 𝑈, 𝑋 and 𝑌 scale as 𝑊, 
and 𝑍 scales as 𝑑, which also means 

𝝏𝒖𝑿

𝝏𝑿
~

𝑼

𝑾
,
𝝏𝒖𝒀

𝝏𝒀
~

𝑼

𝑾
,
𝝏𝒖𝑿

𝝏𝒁
~

𝑼

𝒅
, 𝐚𝐧𝐝 

𝝏𝒖𝒀

𝝏𝒁
~

𝑼

𝒅
. (S17) 

Since 𝑊 ≫ 𝑑, 𝑈/𝑊 ≪ 𝑈/𝑑, and hence,  𝜕𝑢௑/𝜕𝑍 and 𝜕𝑢௒/𝜕𝑍 
have a major contribution towards �̇�. Therefore, �̇� will scale as  

�̇�~
𝑼

𝒅
, (S18) 

for a large portion of the device, except in regions close to the 
stagnation point and close to the wall. This could be confirmed 
by the simulation as shown in Fig.S2C. We show both �̇� 
calculated using the definition given in Eqn.S2 and S18. They 
appear to be close and of the same order of magnitude in the 
region, mainly where they intersect �̇�஼௅ = 10ିଵsିଵ. Thus, the 
measurement of the size of the unyielded region should be 
fairly accurate with this simple shear rate scale. Furthermore, in 
this scale, we make an assumption that the velocity profile is 
parabolic along the 𝑍-axis in the square channel, where 𝜏௪ >

𝜏௬, at least at the boundary of the stagnant region, where 𝜏௪ is 
the wall stress at top or bottom plane. But it is likely that 𝜏௪~𝜏௬, 
leading to a velocity profile with a plug in the middle, and 
quadratic velocity profile elsewhere (a discussion can be found 
out in ESI Section 9 or Fig.S12 pertaining to a similar plug flow 
in a tube). In such a case, the strain rate scale will change to 
𝑈/[𝑑(1/𝜓 − 1)ଶ], where 𝜓 = 𝜏௬/𝜏௪.3 

4. Scaling relationship 
In this section, we employ scaling analyses using a Hele-Shaw 
extensional flow approximation (aspect ratio 𝛼 ≪ 1). To begin, 
we can first calculate an 𝑅𝑒 for the flow of water through the 
MEFD as   

𝑹𝒆 =
𝝆𝑾𝑼𝒅

𝝁𝑾
~𝟏𝟎ି𝟓 𝐭𝐨 𝟏𝟎ି𝟏 ≪ 𝟏, (S19) 

where 𝜌ௐ  is the density of water (~10ଷkg/mଷ), 𝑈 is the 
magnitude of the velocity through the MEFD (~10ିଵ  to 
10ଷ μm/s), 𝑑 is the depth of the MEFD (~10ଶ μm), and 𝜇ௐ  is 
the viscosity of water (~10ିଷ Pa − s). Thus, we can assume a 
creeping flow regime. Further, in a typical experiment, ∆𝑃 was 
reduced and the unyielded region grew from a small size 
(𝑆/𝑊 ≪ 1) to a large size comparable to the width of the 
square (𝑆/𝑊~1) as shown in Fig.4C. For the simplicity of 
calculations, let us assume a Bingham plastic model such that 
when 𝜏 > 𝜏௬, 𝜇 is finite and constant. In the limits of 𝑆/𝑊 ≪ 1, 
we assume a linear extensional flow around the unyielded 
region in the square channel of the MEFD (see Fig.4A). 𝜏 at the 
center of the square channel (𝜏௖) is the extensional stress along 
𝑋 and 𝑌 and it scales as 

𝝉𝑪~𝝁𝑮, (S20) 

where 𝐺 is the constant extensional rate in the MEFD, and 𝜇 is 
the viscosity of the fluid. As we move away from the center, the 
shear stress in depth direction or 𝑍 starts to dominate. 
Assuming a stagnant region for which 𝑆 ≪ 𝑊, but 𝑆 > 𝑑, 
appears, the shear stress at the boundary of the stagnant region 
(𝜏௕) is given as 

𝝉𝒃~
𝝁𝑮𝑺

𝒅
. (S21) 

𝐺 is related to 𝑈, and the relevant length scale for the 
extensional direction is 𝑊. Thus, 𝐺 is given as 

𝑮~
𝑼

𝑾
. (S22) 

𝑈 scales as 𝑄/𝐴௖ , where 𝑄 is the flow rate and 𝐴௖  is the area of 
cross section available for flow. 𝐴௖  in the MEFD scales as 𝑊𝑑, 
and thus, 𝑈 is given as  

𝑼~
𝑸

𝑾𝒅
. (S23) 

The next step is to relate 𝑄 with the experimental parameter, 
∆𝑃. Under the creeping flow, 𝑄 varies linearly with ∆𝑃, and is 
given as 

𝑸 =
𝚫𝑷

 𝝁𝓡𝒐
, (S24) 

where ℛ୭ is the resistance (in the units of mିଷ) to the fluid flow. 
In our experimental setup, there are multiple resistances in 
series. The types of resistances are described below.  
a) PEEK tubing (see Fig.1C) of a circular cross section of 
dimensions, 𝐿௧  and 𝑑௧. The resistance for PEEK tubing is 
ℛ்௨௕௘ = 128𝐿௧/𝜋𝑑௧

ସ as given by Hagen–Poiseuille equation for 
Newtonian fluids. 
b) Side channel with a square cross-section (inlet or outlet 
channel) of dimensions 𝐿, 𝑏, 𝑏 (𝑏 ≈ 𝑑). For the side channel, we 
assume ℛௌ௜ௗ௘ = 𝐿/(𝜆௦௜ௗ௘𝑏ସ), where 𝜆௦௜ௗ௘ = 0.035144.  
C) Square shape of the MEFD with a rectangular cross-section 
of dimensions 𝑊, 𝑊, 𝑑. Assuming flow through the MEFD 
square channel is similar to a channel with a rectangular cross-
section of area 𝑊𝑑 and length 𝑊, we assume ℛௌ௤௨௔௥௘ =
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12/൫1 − 𝜆௦௤𝑑/𝑊൯𝑑ଷ, where 𝜆௦௤ = 0.63. Since there is an inlet 
PEEK tubing, an inlet side channel, a square channel, an outlet 
side channel in series (see Fig.1C), the total resistance in series 
is  

𝓡𝐨 = 𝓡𝑻𝒖𝒃𝒆 + 𝟐𝓡𝑺𝒊𝒅𝒆 + 𝓡𝑺𝒒𝒖𝒂𝒓𝒆. (S25) 

In many experiments presented in this paper, we did not use an 
outlet PEEK tubing (as shown schematically in Fig.1C) to prevent 
the fluid from leaking between the microfluidic device and the 
outlet PEEK tubing. In case we use it, we modify the total 
resistance to include the outlet ℛ்௨௕௘  in series. The total 
resistance, ℛ୭, is given as 

𝓡𝐨 =
𝟏𝟐𝟖𝑳𝒕

𝝅𝒅𝒕
𝟒

+
𝟐𝑳

𝝀𝒔𝒊𝒅𝒆𝒃𝟒
+

𝟏𝟐

൬𝟏 −
𝝀𝒔𝒒𝒅

𝑾
൰ 𝒅𝟑

. (S26) 

From Eqn. S24 and S26, 𝑄 is given as  

𝑸 =
∆𝑷

𝝁 ൮
𝟏𝟐𝟖𝑳𝒕

𝝅𝒅𝒕
𝟒 +

𝟐𝑳
𝝀𝒔𝒊𝒅𝒆𝒃𝟒 +

𝟏𝟐

൬𝟏 −
𝝀𝒔𝒒𝒅

𝑾
൰ 𝒅𝟑

൲

=
∆𝑷

𝝁𝓡𝒐 
. 

(S27) 

Substituting 𝑄 in Eqn. S23 yields  

𝑼~
𝚫𝑷

𝝁𝓡𝒐𝑾𝒅
, (S28) 

and thus, using 𝑈 and combining Eqn. S22, we get 

𝑮~
𝚫𝑷

𝝁𝑾𝟐𝒅𝓡𝒐
. (S29) 

From Eqn. S21, we get 

𝝉𝒃~
𝚫𝑷

𝑾𝟐𝒅𝓡𝒐

𝑺

𝒅
. (S30) 

Since we are in the limits where we observe the existence of the 
unyielded region, the shear stress at the boundary of the 
unyielded region should be of the same order as the yield stress 
of the fluid (𝜏௕~𝜏௬  or 𝜏௕/𝜏௬~1). Thus, Eqn. S30 can also be 
written as  

𝚫𝑷

𝝉𝒚𝑾𝟐𝒅𝓡𝒐

𝑺

𝒅
 ~𝟏. (S31) 

After rearranging the previous equation, we get 
𝑺

𝑾
~

𝟏

𝚫𝑷
𝝉𝒚𝑾𝒅𝟐𝓡𝒐

. (S32) 

Further, we know from the experiments that when Δ𝑃 >

Δ𝑃௖௥௜௧ , 𝑆 = 0. Therefore, we can write 𝑆 as a function of ∆𝑃 and 
𝜏௬  with the following relationship up to two unknowns, 𝐶଴ and 
𝐶ଵ. 

𝑺

𝑾
= −𝑪𝟎 +

𝑪𝟏

𝚫𝑷
𝝉𝒚𝑾𝒅𝟐𝓡𝒐

. (S33) 

5. Calculation of 𝚫𝑷𝒄𝒓𝒊𝒕 

From Eqn. S33 in ESI Section 4, at Δ𝑃 = Δ𝑃௖௥௜௧ , 𝑆/𝑊 = 0, and 
thus, we get 

𝚫𝑷𝒄𝒓𝒊𝒕 = ൬
𝑪𝟏

𝑪𝟎
𝑾𝒅𝟐𝓡𝒐൰ 𝝉𝒚. (S34) 

Assuming an approximate yield stress value before actually 
measuring it, we can calculate Δ𝑃௖௥௜௧  using Eqn. S34. This is 
useful during the experiment, where we can begin recording the 
videos below Δ𝑃௖௥௜௧ . For example, for PEEK tubing of 𝑑௧ =

127 μm,  

𝚫𝑷𝒄𝒓𝒊𝒕(𝐤𝐏𝐚) ≈ 𝟓𝟎𝟎𝟎 𝝉𝒚(𝐏𝐚). (S35) 

If we wish to measure 𝜏௬  of a material, and there is sufficient 
literature to suggest that 𝜏௬  should be of the order of 0.1 Pa, 
then we can start with a maximum Δ𝑃 = 500 kPa and reduce it 
further to record the flow.  

6. Rheometer limit, slip, and other rheology 
measurements 

We used a standard parallel plate rheometer (Discovery Hybrid 
Rheometer-3) to conduct rheological assessments. Our 
observations revealed that we could reliably measure 𝜏௬  of 
carbopol within a range of 𝐶஼ௌ between 0.3% and 0.015%. 
However, 𝐶஼ௌ below 0.015% posed challenges, as we 
encountered the lower limit of shear stress detection imposed 
by the rheometer, as depicted in Fig.S3A. Specifically, at 0.01% 
CS, the measured shear stress coincided with the instrument's 
limit, rendering these data points unreliable and unsuitable for 
inclusion in our analyses. Furthermore, rheological responses 
below 0.01% concentration consistently fell below the 
instrument's detection limit, plateauing at a stress of the order 
of 0.005 Pa. Similarly, additional factors such as slip in both 
standard and MEFD rheometers, as well as operational gaps, 
can influence the rheology of carbopol. Moreover, other 
rheological measurements, including linear and non-linear 
oscillatory studies, are important for our understanding of 
carbopol’s rheology. These discussions are elaborated in the 
subsequent sections. 

6.1 Estimation of rheometer limit 

We can estimate the minimum shear stress, denoted as 𝜏௠௜௡, 
that our parallel plate rheometer can reliably measure using the 
minimum torque, 𝑇௠௜௡ , specified by the manufacturer, which is 
5 nN − m. Using the expression, 𝜏௠௜௡ = 2𝑇௠௜௡/𝜋𝑎௣௟௔௧௘

ଷ , where 
𝑎௣௟௔௧௘  represents the radius of the top plate, we calculate 𝜏௠௜௡ 
to be 0.1 mPa. However, it is important to acknowledge that 
the actual minimum stress could potentially a few orders higher 
in magnitude than this theoretical minimum stress, which may 
influence our measurements of dilute carbopol samples.4–8 
Thus, we determined the actual 𝜏௠௜௡ using four reference 
fluids: Siltech F-1000 (Siltech), light mineral oil (ACP), white 
mineral oil (Fisher Scientific), and water (Milli-Q). These fluids 
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were subjected to �̇� ranging between 100 − 10ି଻sିଵ, and the 
resulting rheological data is presented in Fig.S4A. Notably, we 
found that 𝜏 plateaus at 𝜏~1 mPa, an order higher than the 
lowest limit we calculated from 𝑇௠௜௡ . Additionally, solid lines in 
the figure represent 𝜏 predicted using the Newtonian viscosity, 
denoted as 𝜏௣௥௘ௗ . Here, we calculated the Newtonian viscosity 
using the reverse order of the first five data points starting from 
�̇� = 100 sିଵ. In Fig.S4B, we illustrate the discrepancy between 
the measured or actual shear stress (𝜏௔௖௧) and 𝜏௣௥௘ௗ , which is 
given by |𝜏௔௖௧ − 𝜏௣௥௘ௗ|/𝜏௔௖௧ (in %) vs. 𝜏௔௖௧ . It is evident that 
the error exceeds 10% when 𝜏௔௖௧  fall between 10ିଷ − 10ିଶ Pa 
for all the four fluids. Hence, we establish 0.005 Pa as a 
conservative lower limit or 𝜏௠௜௡  (corresponds to 212 mN − m), 
below which there is considerable uncertainty in 𝜏 
measurement. In light of these considerations, it is evident from 
Fig.3A that 𝜏 data for 0.015% concentration lies above 𝜏௠௜௡ . 
However, for the 0.01% concentration, 𝜏 coincides with 𝜏௠௜௡ . 
Moreover, we observed that for concentrations ranging 
between 0.0015% and 0.005% (data not shown), the shear 
stress at lower shear rates (below 1 sିଵ) plateaus between 
0.003 and 0.008 Pa (averaging roughly about 0.005 Pa). 
Consequently, we exclude carbopol solutions with 
concentrations below 0.015% from our analysis due to the 
inherent uncertainty in 𝜏 measurements at such dilute 
concentrations.  

6.2 Slip and operation gap 

When the shearing surface is smooth, it can lead to slipping of 
the material closer to the surface, affecting the rheological 
measurements. Previous studies have shown that slip effects 
can cause apparent rheological behaviour, particularly at low 
shear rates, often resulting in a noticeable kink in the shear 
stress profile. However, this kink tends to disappear when rough 
shearing surfaces are employed, as demonstrated in studies 
involving soft microgel particles.9–11 Moreover, reducing the 
operating gap can exacerbate the slip effect, especially with 
smooth surfaces.12 These considerations are important for our 
rheometer measurements, given our use of a small operating 
gap of 117 μm and a sandblasted top plate combined with a 
smooth peltier plate, which may lead to slipping. In Fig.S4C, we 
address these concerns. We observed a kink in the rheological 
data for concentrations of 0.025 and 0.05% when using an 
operating gap of 117 μm and a sandblasted plate-smooth 
peltier plate assembly. Upon gluing 600 Grit sandpaper to both 
the top and bottom plates13, we observed the absence of such 
a kink. Subsequently, for the remaining concentrations, we did 
not observe a significant kink. Therefore, we opted to maintain 
the use of a sandblasted top plate and smooth peltier plate for 
these measurements. Furthermore, we conducted a 
comparison of the rheological behaviour of a 0.1% solution 
with operating gaps of 117 μm and 1 mm, finding relatively 
consistent results. Hence, we decided to maintain an operating 
gap of 117 μm for all measurements. This choice allows direct 

comparison with our MEFD measurements, where the depth 
was also set at 117 μm. 
 
It is also essential to investigate the surface roughness of the 
internal surfaces within the MEFD, particularly the top (PDMS) 
and bottom (glass) surfaces of the square channel. We did not 
study the impact of the degree of slip on our yield stress 
measurements in this study; it is a topic for future work. 
However, we can assess whether our microfluidic surfaces were 
rough or smooth. Duangkanya et al. (2022) demonstrated that 
plasma treatment with a power of 200 W for approximately 
24 s resulted in a surface roughness of 600 nm.14 We employed 
plasma treatment twice in our device: first during the bonding 
of PDMS and glass, and secondly during the coating process 
with silane (refer to Materials and Methods). Thus, it is likely 
that we introduced a degree of roughness on the PDMS side as 
well. For the plasma treatment, we utilized a BD-20 High 
Frequency Generator (Electro Technip Products) to treat the 
glass and PDMS surfaces for over a minute during the bonding 
step, and nearly 30 s during the coating process. Assuming a 
similar effect to the aforementioned study, we anticipate a 
surface roughness of the order of 1 μm. Consistent with these 
findings, our observation revealed rough PDMS side in our 
device, as illustrated by two examples of our used devices in 
Fig.S4D. The scratches observed in Fig. S4D are present 
throughout the device but are more noticeable along the 
diagonals and a smaller square inside, which are generated 
during the coating step through the four ports. To measure the 
surface roughness, we conducted additional experiment using a 
PDMS slab subjected to plasma treatment for one minute and 
then 30 s to simulate bonding and coating stages. 
Subsequently, we examined these PDMS slabs under a 5000X 
lens in the Keyence VHX7000 microscope system. Our analysis 
revealed that the roughness was of the order of 1 μm in size, 
consistent with our earlier predictions. Similarly, Alam et al. 
(2014) demonstrated the introduction of surface roughness on 
glass of around 10 nm within 60 s using 300 W plasma 
activation.15 This observation suggests that glass surfaces tend 
to be relatively smoother compared to PDMS. Now, let us 
compare these roughness values with those of the rheometer 
surfaces. The surface roughness for Grit 600 sandpaper is nearly 
130 nm, whereas for the sandblasted plate, it ranges between 
1.4 − 1.8 μm. This indicates that the roughness of the MEFD 
surfaces is comparable to that of the rheometer surfaces. 
However, we acknowledge the necessity of a separate study to 
investigate the relationship between slip and yield stress 
measurements. 

6.3 Oscillatory rheology 

The literature suggests the presence of a percolating network in 
carbopol at low concentrations, transitioning to jamming at 
higher concentrations.16 This microstructural network, 
responsible for the yield stress of carbopol, also leads to 
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elasticity, with both properties generally exhibiting similar 
scaling with concentration and pH.16 Consequently, the 
existence of a yield stress implies a non-zero shear modulus (𝐺′) 
greater than the loss modulus (𝐺"), which remains relatively 
constant at lower frequencies of oscillation (𝜔).16 Further, both 
𝐺′ and 𝐺" are nearly constant at lower strain 𝛾 such that 𝐺ᇱ >

𝐺", but they crossover at higher 𝛾 (> 10%). We also produce 
these rheological measurements as discussed by Gutowski et al. 
(2012).16 Fig.S5A depicts 𝐺ᇱ  and 𝐺" as a function of 𝛾. We 
observe that 𝐺ᇱ  was roughly an order higher than 𝐺"  higher at 
low 𝛾 (< 10%) for 0.1 and 0.3% CS, while they were of similar 
orders of magnitude for 0.05% CS. At higher 𝛾, 𝐺ᇱ  crosses over 
𝐺" at a crossover strain 𝛾௖௥  (such that 𝐺ᇱ = 𝐺" = 𝐺௖௥). We can 
determine the crossover stress, which essentially represents 
the yield stress, as demonstrated by Dinkgreve et al. (2016).17 
For instance, for 0.3% CS, the calculated value of 𝜏௬  was 1.9 Pa, 
compared to 1.3 Pa measured using steady shear rheology. 
Further, in Fig.S5B, we present 𝐺′ and 𝐺" as a function of 
frequency of oscillation (𝜔). We can observe that 𝐺ᇱ > 𝐺" and 
both 𝐺′ and 𝐺" are nearly constant at lower 𝜔 for 0.05 − 0.3% 
CS, indicative of gel-like behaviour as observed by Divoux et al. 
(2011).18 However, when examining the data for 0.025% CS we 
could plot only some of the data at higher 𝜔 and 𝛾, due to the 
proximity of the data to the low torque limit close to 212 nN −

m that we measured in Section S6.1. But from the available 
data, it appears that 𝐺ᇱ~𝐺", and thus 0.025% CS may be gel-
like or liquid-like. Nevertheless, we still consider yield stress of 
0.015% and 0.025% CS in our measurements. However, it may 
be appropriate to limit the discussion of these concentrations 
to apparent yield stress.  

7. Other aspects of real-time measurement of 𝝉𝒚 

In our study, we have successfully demonstrated the 
measurement of low yield stress. However, the MEFD 
rheometer offers another significant advantage: the ability to 
measure the yield stress in real-time as the material flows 
continuously through our device. In this section, we will delve 
into some of the aspects of these measurements in further 
detail.  

7.1 Measurement of 𝝉𝒚 vs. number of recorded frames 

We used 0.1% CS and directed it to flow through the MEFD at a 
range of Δ𝑃, and recorded a long video of a few minutes using 
a Nikon microscope with FITC filter and a Lumenera camera 
(Infinity Analyze 7). Subsequently, we analysed these videos by 
measuring velocities and averaging them across different 
numbers of images, ranging from 2 to 2000. The measured 
values of 𝑆, obtained for different numbers of images recorded 
at a range of Δ𝑃, are presented in Fig.S6A. We observed that 
the magnitude of 𝑆, measured for a range of images between 
2 − 2000, were reasonably close. Furthermore, we derived 

estimates of the yield stress from this data, as illustrated in 
Fig.S6B. It appears that 𝜏௬  by averaging velocities over 2 images 
closely approximated that measured using 2000 images. 
Additionally, for comparison purposes, we included the yield 
stress measured using the rheometer, and we observed a good 
agreement between the two, as indicated by the overlapping 
error bars.  

7.2 Ramp up and ramp down in 𝚫𝑷 

Another important aspect to consider is the measurement of 
thixotropy in yield stress fluids and investigation of rheology 
based on the shear history.19 Bonn et al. (2009) investigated 
thixotropy in carbopol gel by conducting ramp up and ramp 
down sweeps of shear stress. They observed that both curves 
overlapped, ruling out thixotropy for carbopol gel.20 In all our 
experiments presented in the main manuscript, we begin the 
material flow at a significantly high Δ𝑃, and gradually reduce it 
step by step while recording videos at each Δ𝑃. Essentially, our 
measurements represent a ramp down of shear stress. 
However, to further explore this phenomenon, we also 
examined ramp up and ramp down shear stress for two CS with 
concentrations of 0.3 and 0.05%. We measured 𝜏௬  in real-time 
averaging the data over 100 images. For the ramp up scenario 
(see Fig.S7A), we increased Δ𝑃 from 69 kPa to 207 kPa for 
0.3% CS and from 14 kPa to 34 kPa for 0.05% CS. Upon 
immediately commencing video recording after increasing Δ𝑃, 
we observed a slight kink at the beginning where 𝜏௬  is initially 
higher but later stabilized to a steady-state value. Similarly, in 
the ramp down scenario (see Fig.S7B), we decreased Δ𝑃 from 
517 kPa to 207 kPa for 0.3% CS and from 276 kPa to 34 kPa 
for 0.05% CS. In this case, we observed a similar kink but in the 
opposite direction. For comparison, we maintained the same 
steady state Δ𝑃 for both ramp up and ramp down cases. We 
observed that steady state 𝜏௬  is nearly constant for both the 
concentrations, suggesting no discernible difference between 
the ramp up and ramp down studies. This reinforces the findings 
of Bonn et al. (2009). Additionally, the kink observed in the 
beginning diminishes after a few tens of seconds. As discussed 
in our Materials and methods (Section 2.5), we implemented a 
one-minute waiting period after changing ΔP in our 
experiments to ensure that a steady state was reached.  

8. Measurement of 𝝉𝒚 using a wider tube (𝒅𝒕 =

𝟓𝟎𝟖 𝛍𝐦) 
For our experiments, we had a certain fixed range of Δ𝑃 for our 
microfluidic flow controller (0 − 550 kPa). We used a narrow 
tube to measure lower yield stress between  10ିଶ − 1 Pa. We 
also wanted to test a wider tube of 𝑑௧ = 508 μm, which could 
potentially be used to measure higher yield stresses (typically 
above 0.1 Pa). We see in Fig.5A and B that the yield stresses 
measured using the 508 μm tube are fairly precise and match 
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with the rheometer yield stress. In Fig.S10, we show the 
experimental results associated with it, including the 𝑆 − Δ𝑃 
data, model fit using 0.3% CS, and 𝑆/𝑊 vs. Δ𝑃/𝜏௬𝑊𝑑ଶℛ௢  for 
0.05 − 0.3% CS, where the model fit coefficients for 𝑑௧ =

508 μm were 𝐶଴ = −0.133 and 𝐶ଵ = 0.078. We identified that 
the model fit associated with the wider tube was different from 
the model fit of the narrow tube, which should not be the case 
if we have performed the correct scaling. To understand the 
reason behind this, we speculated that there could be 
unyielding in the wider tubes, thereby changing the resistance 
ℛ௢, which was calculated assuming a Newtonian fluid. We 
further investigate this effect of unyielding in a circular tube in 
greater detail in ESI Section 9. 

9. Unyielding and increase in the flow resistance 
in the tubes 

In Fig.S12A and B, we show a schematic of the flow of 
Newtonian and Bingham fluid through a circular tube. Let us say 
that the radius of the tube is 𝑎௢, and the velocity along 𝑧 is 𝑣௭. 
In the Newtonian case, the velocity profile is parabolic. In the 
case of Bingham fluids, the material will flow if the wall stress, 

𝜏௪ > 𝜏௬. Depending on the ratio 𝜓 =
ఛ೤

ఛೢ
, we may see the 

formation of an unyielded plug of radius 𝑎௣ (such that 𝜓 =
௔೛

௔೚
), 

which moves at the constant velocity, 𝑣௣. In the yielded region, 
the velocity profile is parabolic and is given by 𝑣௭. In the 
cylindrical coordinates, the Bingham plastic model for the tube 
flow is given as 

𝝉𝒂𝒛 = 𝝉𝒚 + 𝝁
𝒅𝒗𝒛

𝒅𝒂
, (S36) 

where 𝜏௬  and 𝜇 are Bingham yield stress and viscosity. The 
governing equation to find the modified Hagen–Poiseuille 
equation for the Bingham flow through the tube is given as  

𝝉𝒂𝒛 =
𝜟𝑷

𝟐𝑳𝒕
𝒂, (S37) 

where Δ𝑃 is the pressure drop applied across the tube, and 𝐿௧ 
is the length of the tube. Thus, we need to solve  

𝚫𝑷

𝟐𝑳𝒕
𝒂 = 𝝉𝒚 + 𝝁

𝒅𝒗𝒛

𝒅𝒂
, (S38) 

using the boundary conditions  

𝝉𝒂𝒛|𝒂ୀ𝒂𝒐
= 𝝉𝒘,  𝒗𝒛|𝒂ୀ𝒂𝒐

= 𝟎,  𝒗𝒛|𝒂ୀ𝒂𝒑
= 𝒗𝒑. (S39) 

Therefore, the flow rate, 𝑄, is given as  

𝑸 =
𝝅𝒂𝒐

𝟒𝚫𝑷

𝟖𝝁𝑳𝒕
൤𝟏 −

𝟒

𝟑
𝝍 +

𝟏

𝟑
𝝍𝟒൨, (S40) 

where the term గ௔೚
ర୼௉

଼ఓ௅
 is of the Newtonian flow. Thus, we define 

the new Bingham flow resistance in the PEEK tubing as 

𝓡𝑻𝒖𝒃𝒆𝑩𝑷
=

𝚫𝑷𝑻

𝝁𝑸
=

𝟏𝟐𝟖𝑳𝒕

𝝅𝒅𝒕
𝟒 ቂ𝟏 −

𝟒
𝟑

𝝍 +
𝟏
𝟑

𝝍𝟒ቃ   
 (S41) 

= 𝓡𝑻𝒖𝒃𝒆𝑵
൤𝟏 −

𝟒

𝟑
𝝍 +

𝟏

𝟑
𝝍𝟒൨

ି𝟏

, 

where ℛ்௨௕௘ே
 is the resistance in the case of Newtonian flow. 

We need to modify our total resistance ℛ௢  according to this 
new tube resistance, such as 

𝓡𝐨𝐁𝐏
= 𝓡𝑻𝒖𝒃𝒆𝑩𝑷

+ 𝟐𝓡𝑺𝒊𝒅𝒆 + 𝓡𝑺𝒒𝒖𝒂𝒓𝒆. (S42) 

Thus, the dimensionless shear stress will appear as ΔP/

𝜏௬𝑊𝑑ଶℛ௢ಳು
. In Fig.S12C, we show the dimensionless data using 

both ℛ୭ and ℛ୭ాౌ
 for both the tubes, 𝑑௧ = 127 and 508 μm. 

We denote the scaled data using ℛ୭ాౌ
 in the figure by corrected 

resistance or CR. We also present the model fit for both the 
tubes. We can infer from the figure that the correction term is 
not significantly different for the 127 μm, meaning, there is not 
a significant plug formation in the 127 μm tube. The corrected 
scaled data lies within the confidence interval of the model fit. 
Thus, we do not change the model fit for the calculation of the 
yield stress, and stick with the Newtonian assumption. 
However, for 508 μm, we see a significant change in the scaled 
data. The corrected data is closer to the model fit of 127 μm, 
almost within its confidence interval. This shows that the 
difference between the model fits could be due to the increased 
flow resistance and unyielded plug formation in the wider tube. 
Notably, as discussed in ESI Section 8, when a separate 
characterization step was followed, it still produced the correct 
yield stress values for the 508 μm tube (see Fig.5A). But if we 
want to stick to one model fit as calculated using the 
127 μm tube, we must check if there is a significant change in 
the flow resistance due to the yield stress in the tube size that 
we might be using. For a tube of any dimensions, we can work 
out a criterion that needs to be followed to ensure that 
unyielding is not altering ℛ୭. This criterion is that the wall stress 

𝜏ௐ =
୼௉ௗ೟

ସ௅೟
≫ 𝜏௬. From Eqn. S33 or 5, we can also write this 

criterion as 
ସ௅೟ቀ

ೄ

ೈ
ା஼బቁ

஼భ୛ୢమℛ౥ௗ೟
≪ 1. For 𝑑௧ = 127 μm and 𝐿௧ = 1 m and 

ௌ

ௐ
 varying between 0.1 − 0.7, 

ସ௅೟ቀ
ೄ

ೈ
ା஼బቁ

஼భ୛ୢమℛ౥ௗ೟
= 0.045 − 0.27, which 

is satisfying the criterion. When 𝐿௧  is increased, even ℛ୭ 
increases, and thus, this ratio still remains much smaller than 1. 
Thus, changing the length of the smaller tube does not lead to 
any unyielding in the tube or changes to the model fit.  

10. Error analysis and uncertainty in the 
measurement of 𝝉𝒚 

As we discussed in Section 3.5 in main text, for each pair of 𝑆 −

Δ𝑃, we measured one value of 𝜏௬, and thus, many such 𝜏௬  were 
averaged to determine 𝜏௬ெ. We calculated the standard 
deviation, 𝑆ఛ೤ಾ

, and percentage error, 𝑆ఛ೤ಾ
/𝜏௬ெ (%), for 

different 𝜏௬ெ  as shown in Fig.5B. We saw a general trend of 
increasing 𝑆ఛ೤ಾ

/𝜏௬ெ  from 1 to nearly 50% for decreasing 𝜏௬ெ  

from ~𝑂(1) to 𝑂(10ିଶ) Pa. In our experiments, we used two 
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sizes of PEEK tubings. For 𝜏௬ெ~𝑂(10ିଵ) to 𝑂(1) Pa, we used 
PEEK tubing of 𝑑௧ = 508 μm, and for 𝜏௬ெ~𝑂(10ିଶ) to 𝑂(1), 
𝑑௧ = 127 μm, and their respective errors are shown by 
diamonds and circles. We also report the error in the 
measurement of the yield stress of blood in Fig.5B. For 
comparison, we calculated 𝑆ఛ೤ೃ

/𝜏௬ோ (%) using the rheometer 

for three CS samples (see Fig.5B). The measurement errors for 
both the rheometer and MEFD were similar in magnitude.  
 
The source of the uncertainty in the measurement of 𝜏௬  could 
be the uncertainty in Δ𝑃, 𝑑(Δ𝑃), and 𝑆, 𝑑𝑆. The linear 
propagation of errors gives us the result,  

𝒅𝝉𝒚 = ඩ൭
𝝏𝝉𝒚

𝝏(𝚫𝑷)
𝒅(𝚫𝑷)൱

𝟐

+ ቆ
𝝏𝝉𝒚

𝝏𝑺
𝒅𝑺ቇ

𝟐

 . (S43) 

Using Eqn. 5, we can write 𝑑𝜏௬  in terms of the experimental 
parameter Δ𝑃 and 𝜏௬  as  

𝒅𝝉𝒚 = ඨቆ
𝝉𝒚

𝚫𝑷
𝒅(𝚫𝑷)ቇ

𝟐

+ ൬
𝚫𝑷

𝑪𝟏𝑾𝟐𝒅𝟐𝓡𝐨
𝒅𝑺൰

𝟐

 . (S44) 

Thus, the relative uncertainty is given as  
𝐔𝐧𝐜𝐞𝐫𝐭𝐚𝐢𝐧𝐢𝐭𝐲 (%)  = 
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𝟐

 

𝝉𝒚
𝐗 𝟏𝟎𝟎. 

(S45) 

In our experiments, 𝑑(Δ𝑃) is around 0.069 kPa (minimum Δ𝑃 
applied by the flow controller), and the lowest 𝑆 that we 
measured was of the order 𝑂(10) μm (but not considered in 
the calculation of 𝜏௬ெ  as 10 μm < 𝑑). Thus, we assumed 
𝑑(Δ𝑃) =  0.069 kPa and 𝑑𝑆 = 10 μm. We calculated 
uncertainty in the measurement of 𝜏௬  for the smaller tube 𝑑௧ =

127 μm for a range of 𝜏௬  varying between 10ିଷ to 10ଵ Pa, and 
Δ𝑃 varying between 10ିଶ to 10ଷ kPa using Eqn. S45 as shown 
in Fig.S13. If we consider a yield stress with uncertainty of 10% 
to be sufficiently precise, then this 10% tolerance window 
narrows as 𝜏௬  decreases as shown in Fig.S13. Consequently, a 
smaller range of ΔP is available for conducting experiments to 
attain precise results at low 𝜏௬. At higher 𝛥𝑃, the uncertainty 
arises primarily from measuring a small 𝑆, while at lower 𝛥𝑃 
values, it stems from the uncertainty in 𝛥𝑃 itself. In our 
experiments, we varied Δ𝑃 between 𝑂(1) to 𝑂(10ଷ) kPa, and 
thus, we could measure 𝜏௬  between 10ିଶ to 1 Pa with fair 
precision (~10%).  

11. More on the limitations of the MEFD 

11.1. The depth constraint in the MEFD 

In the current setup, the flow in the depth direction is confined 
to 𝑑 = 117 μm. If the test fluid contains large particles (as large 
as tens and hundreds of μm), they will obstruct the flow, and 

the measurement of 𝜏௬  cannot be performed. If we increase 𝑑 
up to a few mm or cm, it may be difficult to view the fluid flow 
at the center plane in the case of concentrated suspensions. But 
it turns out that the unyielded region not only occurs at the 
midplane, but it also occurs in the bottom or top plane, as 
shown in ESI Fig.S1C. We will explore this aspect in the future, 
particularly with the concentrated suspensions. This includes 
finding a separate characterization equation for the top or 
bottom plane, which needs to be determined before 
performing the measurements. Further, several studies 
demonstrate confinement effects on the flow of a yield stress 
fluid, typically towards reducing the yield stress.21–24 There is a 
length scale associated with the microstructure within the 
material, termed as the cooperativity length scale. If the length 
of the confined dimension (in our case, 𝑑 = 117 μm) is at least 
an order higher than the cooperativity length scale, then the 
confinement effects are not observed. For CS, the cooperativity 
length scale is of the order of 10 μm,21–24 thus the confinement 
effects are unlikely to play a role in the MEFD. But this needs to 
be factored in while fabricating the MEFD.  

11.2. Investigation of particle accumulation in the MEFD 

In the past decade, considerable research has been dedicated 
to investigating shear banding in yield stress fluids, a 
phenomenon characterized by the segregation of sheared 
material into a high-strain band compared to the surrounding 
material.25 This phenomenon is pervasive in complex materials 
and has been observed in systems such as carbopol gel and 
colloidal glassy materials.26,27 It has been demonstrated that 
shear banding results in non-linear velocity profiles across the 
gap between the cone and plate in a rheometer, particularly 
below a critical shear rate �̇� = 0.2 sିଵ.26 This behaviour is 
attributed to changes in the concentration of particles across 
the sheared gap, which occur due to shear-induced migration 
towards regions of lower shear rate.26 Given the spatially 
varying nature of shear rate in our MEFD rheometer, it is 
imperative to investigate the potential occurrence of shear 
banding, which could result in the accumulation of carbopol 
near the centre and consequently lead to a pseudo or apparent 
yield stress. To address this, we used images extracted from our 
experimental video and developed a MATLAB code to track the 
tracer particles. This code enabled us to measure the density of 
tracer particles across an 8 × 8 grid within the image, providing 
insights into the potential occurrence of any high concentration 
of particles near the centre of the MEFD. In Fig.S8A and B, we 
present both the experimental image and the corresponding 
analysed image of 0.3% CS at Δ𝑃 = 138 kPa, with detected 
particles highlighted in red. In Fig.S8C and D, we depict the 
particle density distributions for 0.3% at Δ𝑃 of 138 kPa and 
241 kPa, and similarly, for 0.05% at Δ𝑃 of 14 kPa and 34 kPa. 
Upon examination of these figures, it is evident that there is no 
discernible preferential crowding of particles closer to the 
centre of the MEFD. Instead, the particle density appears to be 
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randomly distributed across all grid points. Therefore, it appears 
that there is no migration of particles, indicating that we are not 
measuring an apparent yield stress induced by increased 
concentration at the centre of the device. 
 

Table S1: Herschel-Bulkley parameters listed for CS of 𝐶஼ௌ ranging between 0.015 to 
0.3% for rheological data shown in Fig.S3A. 

Concentration 
of carbopol, 

𝐶஼ௌ (%) 

Yield stress, 
𝜏௬ோ (Pa) 

Consistency 
index, 𝑚௣ோ , 
(Pa − s୬౜౎) 

Flow 
index, 𝑛௙ோ  

0.3 1.2941 2.4935 0.49 
0.2 0.9610 1.7401 0.49 
0.1 0.5321 1.2204 0.48 

0.05 0.0963 0.1260 0.61 
0.025 0.0210 0.0210 0.83 
0.015 0.0094 0.0034 0.99 

 
Movie S1 (separate file). Flow of human blood (donor 𝑊ଵ) 
through the MEFD. We observe a relatively stagnant, non-
moving region closer to the center, as demarcated by yellow 
box.    
Movie S2 (separate file). Flow of 20% mucin suspension 
through the MEFD. We observe a relatively stagnant, non-
moving region closer to the center, as demarcated by yellow 
box.    
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