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Figure S1. Compositional analysis via EDX of the CuCrO2 films. Left panel: experimental vs. 

nominal Mg amount. Right panel: amount of Cu and (Cr+Mg) as a function of the amount of Mg 

introduced. 

 

 

 

 

 

Figure S2. XRD patterns of Mg-doped CuCrO2 coatings highlighting the main diffraction peak at 

~36.5°. The black vertical dash line represents the expected (012) peak position according to ICDD 

No. 74-0983. 

 

 

 
  



Figure S3. SEM top view images for the CuCrO2 coatings at various Mg dopant concentrations 

from x= 0 (undoped) to x = 0.12. The scale bar is 2 µm for all the low-magnification images and 

400 nm for all the high-magnification images. 

 

 
 

 

Figure S4. Cross-sectional SEM images for CuCrO2 films at different Mg concentrations. The scale 

bar is 200 nm and is common to all panels. 

 

  



Figure S5. XPS survey spectrum of a typical Mg-doped CuCrO2 film. 

 
 

 

 

 

Figure S6. XPS spectra and respective fittings of Cu 2p, Cr 2p and O 1s regions for a typical Mg-

doped CuCrO2 sample. 

 
 

 

 

 

 

Figure S7. XPS spectra of a) Cr 3p and Mg 2p region, and b) valence band (VB) region at various 

Mg concentrations. 

 
  



Figure S8. Average visible transmittance (wavelength between 400 nm to 800 nm) for CuCrO2 films 

as a function of Mg concentration. The black triangle shows the value for a conventional, copper-

rich film. 

 

 

 

 

 

Figure S9. Absorptance (A) spectra for undoped CuCrO2 films on borosilicate glass prepared from 

copper-deficient precursors (nominally [Cu0.4Cr0.6O]2) and stoichiometric precursors (nominally 

[Cu0.5Cr0.5O]2). These have been calculated from Transmittance (T) and reflectance (R) spectra, 

through the relationship A = 100 – T – R (%). 

 

 

  



Figure S10. Reflectance spectra for CuCrO2 films as a function of the Mg dopant concentration. 

The inset shows the average reflectance in the visible region (400 nm to 800 nm). 

 

 

 

 

 

 

Table S1. Compositional analysis obtained via EDX. The incorporation efficiency quantifies the 

amount (in %) of Mg that was detected in the films, compared to the amount of Mg used in the 

precursor solution. 

 

 

Nominal 

Mg (%) 

Real Mg 

(%) 

Incorporation 

efficiency (%) 

Nominal 

Cu (%) 

Nominal 

(Cr+Mg) (%) 

Real Cu 

(%) 

Real 

(Cr+Mg) (%) 

0 0.12±0.31 N/A 40 60 49.3±0.6 50.7±1.7 

2.5 0.68±0.32 27.2 40 60 50.4±1.4 49.6±2.2 

5 1.14±0.28 22.8 40 60 49.9±1.0 50.1±2.9 

7 1.90±0.30 27.1 40 60 51.7±1.1 48.3±3.4 

11 3.02±0.25 27.4 40 60 50.2±0.8 49.8±2.0 

  



Table S2. Values for visible transmittance vs. conductivity for CuCrO2 and CuGaO2 films reported 

in the literature and for some of the best samples presented in this study. 

 

Material 
Conductivity 

(S cm-1) 

Vis. transmittance 

(%) 
Reference 

CuCrO2 0.017 60 [1] 

CuCrO2 0.140 70 [2] 

CuCrO2 50 52 [3] 

CuCrO2 0.232 62 [4] 

CuCrO2 35 51 [5] 

CuCrO2 0.083 55 [6] 

CuCrO2 0.25 55 [7] 

CuCrO2 17 40 [8] 

Mg-doped CuCrO2 0.136 65 [9] 

Mg-doped CuCrO2 1.0 80 [10] 

Mg-doped CuCrO2 2.174 57 [11] 

Mg-doped CuCrO2 220 30 [12] 

Mg-doped CuCrO2 217 70 [13] 

Zn-doped CuCrO2 0.262 68 [14] 

CuGaO2 0.063 80 [15] 

CuGaO2 0.015 80 [16] 

CuGaO2 0.004 60 [17] 

This worka 

[Cu0.4Cr0.575Mg0.025O]2 13.3 60.5 This work 

[Cu0.4Cr0.55Mg0.05O]2 21.2 53.6 This work 

[Cu0.4Cr0.53Mg0.07O]2 19.2 57.8 This work 

[Cu0.4Cr0.50Mg0.10O]2 26.8 55.5 This work 

[Cu0.4Cr0.49Mg0.11O]2 52.8 50.8 This work 

[Cu0.4Cr0.48Mg0.12O]2 44.5 60.5 This work 

a the compositions listed are nominal, based on the amount of precursors used 
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