Electronic Supplementary Material (ESI) for RSC Applied Interfaces. This journal is © The Royal Society of Chemistry 2024

Supporting information

to:

Solution-treatment controls charge-transfer states and energy-level

alignment at hybrid CuSCN-organic interfaces

Yingying Li^{1,2}, Zhewei Chen^{1,2}, Wenjie Zhou^{1,2}, Qi Wang^{1,2}, Yuan Zhang^{1,2}, Tao Song^{1,2,*}, Baoquan Sun^{1,2,*} and Steffen Duhm^{1,2,*}

¹Institute of Functional Nano & Soft Materials (FUNSOM), Soochow University, Suzhou 215123, People's Republic of China ²Jiangsu Key Laboratory of Advanced Negative Carbon Technologies, Soochow University, Suzhou 215123, People's Republic of China

*tsong@suda.edu.cn, bqsun@suda.edu.cn, duhm@suda.edu.cn

Figure S1. XPS measured Cu 2p (a) and S 2p (b) spectra of CuSCN thin films on ITO.

Figure S2. AFM topography of spin-coated CuSCN thin films on PEDOT:PSS/ITO substrates with their respective surface roughness.

Figure S3. UPS-measured (a) valence band region, (b) secondary electron, and (c) valence band regions plotted on a semi-log scale of CuSCN thin films on PEDOT:PSS/ITO substrates.

Figure S4. Characteristics of trap-filled-limit voltage and corresponding trap density by I–V curves of a single carrier device based on different CuSCN films.

Figure S5. Trap-filled-limit voltage and corresponding trap density with standard deviation of different CuSCN-film-based hole-only devices.

Figure S6. Thickness-dependent UPS spectra of (a) $C_{60}/CuSCN \#xx$, (c) $C_{60}/CuSCN \#Hx$, and (e) $C_{60}/CuSCN \#HF$ and XPS measured C 1s core level spectra of (b) $C_{60}/CuSCN \#xx$, (d) $C_{60}/CuSCN \#Hx$, and (f) $C_{60}/CuSCN \#HF$, respectively. For $C_{60}/CuSCN \#xx$ the HOMO level onset of 1.6 nm C_{60} is at 1.31 eV BE and shifts gradually toward higher BE by 0.11 eV from 1.6 nm to 12.8 nm thickness, this shift is parallel to the shift of the C 1s core-

level shift, indicating energy-level bending in the C_{60} layer. For C_{60} on CuSCN #HF the HOMO and C 1s level shift both by 0.10 eV.

Figure S7. Cross-section scanning electron micrographs of CuSCN #xx (a), CuSCN #Hx (b), CuSCN #xF (c), CuSCN #HF (d).

Substrate	CuSCN	RMS	VBM	Trap state density	CT state intensity
		(nm)	(eV)	(cm ⁻³)	(a.u.)
ITO (RMS=3.78)	#xx	6.81	0.83		
	#Hx	4.21	0.89		
	#xF	5.84	0.77		
	#HF	5.37	0.84		
PEDOT:PSS/ITO (RMS=1.82)	#xx	4.35	0.90	3.54*10 ¹⁷	1.9
	#Hx	3.34	0.87	3.51*10 ¹⁷	0.9
	#xF	5.43	0.79	2.73*10 ¹⁷	10.6
	#HF	5.18	0.86	3.34*10 ¹⁷	2.1

Table S1. Properties of CuSCN films.