Supporting Information

A Novel Water Developable Tetraphenyltin Based Nonchemically-Amplified Molecular Resist for Sub-13nm Lithography

Zhihao Wang, ^a Jinping Chen, ^{*,a} Tianjun Yu, ^a Yi Zeng, ^a Xudong Guo, ^b Shuangqing Wang, ^b Rui Hu, ^b Peng Tian, ^c Michaela Vockenhuber, ^c Dimitrios Kazazis, ^c Yasin Ekinci, ^{c,*} Guoqiang Yang^{*,b} and Yi Li^{*,a}

^aKey Laboratory of Photochemical Conversion and Optoelectronic Materials,

Technical Institute of Physics and Chemistry, University of Chinese Academy of

Sciences, Chinese Academy of Sciences, Beijing 100190, China. E-mail:

chenjp@mail.ipc.ac.cn; yili@mail.ipc.ac.cn

^bKey Laboratory of Photochemistry, Institute of Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Beijing 100190, China. E-mail: gqyang@iccas.ac.cn

^cPaul Scherrer Institute, Laboratory for X-ray Nanoscience and Technologies, CH-5232 Villigen, Switzerland. yasin.ekinci@psi.ch **Table of Contents**

- 1. Synthesis and Characterization of SnMS₄ and SnMSF₄
- 2. Normalized remaining thickness (NRT) analysis
- 3. EUV lithographic patterns with different exposure doses for SnMSF₄ resist
- 4. LER measurement of high-resolution SEM images
- 5. XPS test results for mechanism analysis

1. Synthesis and Characterization of SnMS₄ and SnMSF₄

Scheme S1 Synthesis of SnMSF₄

Chemicals and Reagents. All the standard reagents and chemicals were purchased from commercial sources and used without any further purification. $Sn(p-C_6H_4Br)_4$ was synthesized according to the method reported in previous literature.^{1, 2}

Synthesis of tetrakis(3'-(methylthio)-[1,1'-biphenyl]-4-yl)stannane (SnMS₄). Sn(p-C₆H₄Br)₄ (4 g, 5.4 mmol), 3-methylthiophenylphenylboric acid (5.44 g, 32.4 mmol), and anhydrous potassium carbonate (6.00 g, 43.4 mmol) were added to a 200 mL Schlenk flask, which was purged with argon and then charged with water (15 mL) and toluene (30 mL). Then tetratriphenylpalladium (0.40g, 0.35mmol) was added under a nitrogen atmosphere. The mixture was stirred at reflux overnight under a nitrogen atmosphere. The solution was cooled to room temperature and extracted with toluene/H₂O three times. The combined organic layer was washed with brine, and dried over Mg₂SO₄. The solvent was removed under vacuum, and the crude product was purified by column chromatography on silica gel (petroleum ether/CH₂Cl₂=1:1, v/v) to give SnMS₄ as a white solid (0.96 g, 19 %).¹H NMR (400 MHz, CD₂Cl₂) δ 7.76 (d, *J* = 8.1 Hz, 8H, benzene), 7.68 (d, *J* = 8.1 Hz, 8H, benzene), 7.51 (s, 4H, benzene), 7.43 – 7.35 (m, 8H, benzene), 7.30 – 7.22 (m, 4H, benzene), 2.53 (s, 12H, CH₃).Synthesis of (stannanetetrayltetrakis([1,1'-biphenyl]-4',3-diyl))tetrakis (dimethylsulfonium)

trifluoromethanesulfonate (SnMSF₄). SnMS₄ (0.24 g, 0.26 mmol) was added to a 250 round-bottomed flask with mL 120 mL dry CH_2Cl_2 . Then methyl trifluoromethanesulfonate (0.52 g, 3.2 mmol) was added at room temperature. After stirring in the dark for 24 h, a large number of white solids were precipitated in the solution, which was filtered and washed with ether to give white solid of 0.38 g with a yield of 93%.¹H NMR (400 MHz, CD₃CN) δ 8.19 (s, 4H, benzene), 8.09 (d, J = 7.9 Hz, 4H, benzene), 7.99 – 7.76 (m, 24H, benzene), 3.21 (s, 24H, CH₃). ¹⁹F NMR (600 MHz, CD₃CN) δ -79.29 (s, 1H). HRMS (ESI) m/z: [M]⁴⁺ calcd for C₅₆H₅₆S₄Sn⁴⁺ 244.0566, found 244.0566; [M]⁻ calcd for CF₃SO₃⁻ 148.9526, found 148.9525. FT-IR: v_{max}/cm⁻¹ 3061, 3024 and 2935 (CH), 1258 (CF₃), 1161 and 640 (SO₂), 1030 (S-O). Elemental analysis (%) calcd for C₆₀H₅₆F₁₂O₁₂S₈Sn: C, 45.84; H, 3.59; S, 16.31; found: C, 46.64; H, 3.68; S, 16.06.

Figure S1. ¹H NMR (400 MHz, CD₂Cl₂) spectrum of SnMS.

Figure S2. ¹H NMR (400 MHz, CD₃CN) spectrum of SnMSF₄.

Figure S3. ¹⁹F NMR (400 MHz, CD₃CN) spectrum of SnMSF₄.

Figure S4. HRMS (ESI) spectrum of SnMSF₄.

Figure S5. FT-IR spectrum of SnMSF₄.

2. Normalized remaining thickness (NRT) analysis

The contrast curves were obtained by fitting the film thickness data using a logistic function. According to the contrast curve, the tangent line at y = 0.5 can be obtained. The dose of tangent at y = 0 and 1 are considered as D_0 and D_{100} . The contrast could be calculated by the equation 1:

$$\gamma = \frac{1}{\log^{(0)}(D_{100}/D_0)}$$
(1)

3. EUV lithographic patterns with different exposure doses for SnMSF₄ resist

Figure S6. The 16, 15, 14 and 13 nm L/S line patterns of SnMSF₄ resist under different exposure doses for EUVL (Developer: H₂O).

Figure S7. The 16, 15 and 14 nm L/S line patterns of SnMSF₄ resist under different exposure doses for EUVL (Developer: IPA/H₂O=1/10).

Figure S8 The 12 nm L/S line patterns of SnMSF₄ resist for EUVL (Developer: H₂O).

4. LER measurement of high-resolution SEM images

The information on the SEM images was listed as following:

Data Size = 1280x960; Pixel Size=0.9921876; Signal Name=SE+BSE(TU); Magnification = 100000

Figure S9. The LER and LWR measurement of 16 nm L/S pattern of SnMSF₄ resist

Figure S10. The LER and LWR measurement of 15 nm L/S pattern of SnMSF₄ resist (Developer: H₂O).

Figure S11. The LER and LWR measurement of 14 nm L/S pattern of SnMSF₄ resist (Developer: H₂O).

Figure S12. The LER and LWR measurement of 13 nm L/S pattern of SnMSF₄ resist (Developer: H₂O).

Figure S13. The LER and LWR measurement of 16 nm L/S pattern of SnMSF₄ resist

(Developer: IPA/H₂O=1/10).

Figure S14. The LER and LWR measurement of 15 nm L/S pattern of $SnMSF_4$ resist (Developer: IPA/H₂O=1/10).

5. XPS test results for mechanism analysis

Figure S15. The XPS survey spectrums and high-resolution XPS spectra of C 1s, S 2p, F 1s, O 1s and Sn 3d for the pristine film of SnMSF₄ resist.

Figure S16. The XPS survey spectrums and high-resolution XPS spectra of C 1s, S 2p, F 1s, O 1s and Sn 3d for the SnMSF₄ resist films after e-beam exposure.

1. Yang, Y.; Beele, B.; Bluemel, J., Easily immobilized di- and tetraphosphine linkers: Rigid scaffolds that prevent interactions of metal complexes with oxide supports. *Journal of the American Chemical Society* **2008**, *130* (12), 3771-3773.

2. Uptmoor, A. C.; Geyer, F. L.; Rominger, F.; Freudenberg, J.; Bunz, U. H. F., Tetrahedral Tetrakis(p-ethynylphenyl) Group IV Compounds in Microporous Polymers: Effect of Tetrel on Porosity. *Chempluschem* **2018**, *83* (5), 448-454.