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Fig. S1 NMR spectra of 4-dimethylaminomethylstyrene in CDCls: (A) 'H and (B) 13C.
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Fig. S2 Differential scanning calorimetry heating curve (20K min=) of pDMAMS prepared from neat free radical
polymerization of DMAMS with AIBN at 100°C, with calculation of T, (82°C) as the inflection point in the second-
order thermal transition.

Fig. S3 SEM-EDX images of silica fiber paper coated with pDMAMS?*. The bright Si and diminished C/Br signal at the
shorn fiber cross-section and the inverse along the length of the fiber indicate conformal coating.
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Fig. S4 H DOSY pseudo-2D NMR spectrum of bulk-synthesized pDMAMS dissolved in CDCls. Inset is zoomed in to
show peaks for CHCI; and residual monomer, which are significantly weaker than the polymer peaks.
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Fig. S5 (A) H and (B) 3C NMR spectra of pDMAMS prepared from neat free-radical polymerization of DMAMS with
AIBN at 100°C. Trace monomer (<1 mol %) is visible in the *H NMR spectrum.
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Fig. S6 Overlaid ATR-FTIR spectra of 4-dimethylaminomethylstyrene (DMAMS monomer, black) and bulk-
synthesized pDMAMS (blue) with intensities normalized to the peak at 1510 cm™, which remains invariant over the
course of polymerization. Features present in pPDMAMS but not in the monomer are annotated with a blue asterisk
(*) while those present in DMAMS but not the polymer are annotated with a black dagger ().
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Fig. S7 Density functional theory calculations and associated structures detailing potential annealing-induced cross-
linking reactions.
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Fig. S8 Mechanical properties of pPDMAMS in the as-deposited, annealed, and alkylated states. (A) Film loss/internal
friction (Q1); (B) relative change in the speed of sound.
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Fig. S9 XPS depth-profiling results for different elements for pDMAMS* and pDMAMS*(HCO5™). (A) ratio of
guaternary ammonium N* to amine N (measurement of functionalization); (B) Carbon; (C) Nitrogen; (D) Bromine; (E)
Oxygen; (F) Surface and 90 nm (500 s sputtered) Cl spectra.
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Fig. S10 XPS spectra of pPDMAMS* and pDMAMS* treated with trimethylamine.

Table S1 Atomic percentages as determined via XPS for various pDMAMS compositions.

Atomic %
Sample C N N* 0] Br Br- Cl % N | %Br

(286 eV) | (399eV) | (402eV) | (530eV) | (69eV) | (67 eV) | (200eV) | as as

N+ Br-
pDMAMS 81.80 3.24 — 14.80 — — — — —
pDMAMS* 88.30 1.64 3.06 3.61 0.46 2.40 0.50 65.1 | 83.9
pDMAMS*(Br) 87.83 1.65 3.09 3.64 0.56 2.29 0.90 65.1 | 80.3
pDMAMS*(Br) 88.64 1.88 3.51 3.24 0.27 2.47 — 65.3 | 90.1
amine treated
pDMAMS*(HCO;5™) | 83.00 3.73 2.86 10.30 — — — 434 | —
Calculation of IEC (ion exchange capacity in mEq g™)
1000 mmol
IEC = DF
MW MWalkyl halide
monomer #FG EQ s1

where:

MW 0nomer = Molecular weight of the monomer (e.g., DMAMS = 161.25 g mol™)

DF (degree of functionalization) = fraction of monomers that have been quaternized (e.g., 95%)

MW, yinaiee = mMolecular weight of the quaternization agent (e.g., 1-bromo-3-chloropropane =

157.44 g mol™)




#FG (number of functional groups) = number of reactive groups (e.g., halides) per quaternization agent
(e.g., 1-bromo-3-chloropropane = 2)

Calculation of cross—linking density

For pDMAMS*(Br~). Known: 65.1% N is N*, 80.3% Br is Br~. Assume basis of 100 nitrogens. For simplicity,
treat Cl as Br as it behaves the same way chemically. Set up system of equations where x is the number of
cross-links, y is the number of monolinks. Each cross-link has two N* and two Br~. Each monolink (assuming
one halide reacts with N and the other halide remains attached to the other end of the propyl group)
contains one N*, one Brand one Br.

System of equations to solve:
65=2x+y EQ. S2A
(Number of N* must add to 65 assuming a 100 N basis)
0.197 = y/(2y + 2x) EQ. S2B
(the percentage of Br relative to Br + Br- must be 19.7 %)
Solving yields x = 24.5 and y = 15.9.

Therefore, roughly 49% of all N (and therefore 49% of all DMAMS monomers) are participating in a cross—
link as N*. ~16% of N is in a monolink as N*, and 35% of N remains as an amine.

From these calculations, for every mol of N in the polymer film, 0.4 mol of 1-chloro-3-bromopropane is
reacted into the film, with 0.24 mol of 1-chloro-3-bromopropane reacting at both ends, 0.16 mol reacting
at only one end.



Additional GISAXS/GIWAXS figures, equations, and modeling results
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Fig. S11 (A) 2D GIWAXS patterns of various pDMAMS films. (B) 1D vertical slice GISAXS spectra taken from 2D GISAXS
patterns in Fig. 6.



Table S2 Structure-independent multi-level unified fit model parameters for fit GISAXS spectra.
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Sample G; Rg, P, B, G, Rg, P, B, background
(cm™) | (nm) (cm™) (nm) (cm™)
pDMAMS 10568 | 81.3 2.6 4.8E-3 | 6.2 3.5 2 1.2E-2 1.85
Annealed 2185 65.7 2.1 3.86-3 | 0.07 | 1.5 1.7 2.3E-2 1.00
pDMAMS
pDMAMS* 8195 48.1 2.59 7.6E-3 [ 99.0 | 10.5 | 3.76 4.5E-5 1.80
pDMAMS*(HCO;™) | 3143 99.0 1.69 4.0E-2 | 42.0 | 7.3 3.2 2.5E-4 | 0.70
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Fig. $12 pDMAMS* and pDMAMS*(HCO5~) GISAXS spectra and unified fit models with R, length scales denoted.




