Supplementary Information

Submicron-Thick Single Anion-Conducting Polymer Electrolytes

Hunter O. Ford,¹ Brian L. Chaloux,² Youngchan Kim,³ Jeffrey W. Long,² Debra R. Rolison,^{2*} and Megan B. Sassin^{2*}

*Corresponding Authors: E-mail: <u>megan.sassin@nrl.navy.mil</u>; <u>debra.r.rolison.civ@us.navy.mil</u>

¹ NRL–NRC Postdoctoral Associate in the Chemistry Division, U.S. Naval Research Laboratory, Washington, DC 20375, USA

² Chemistry Division, U.S. Naval Research Laboratory, Washington, DC 20375, USA

³ Materials Science & Technology Division, U.S. Naval Research Laboratory, Washington, DC 20375, USA

Fig. S1 Contact-angle measurements for various iCVD-derived pDMAMS films.

Sample ID	R1	R2	Q ₁	Q ₁ _a
Br_1	67	1128	1.0×10 ⁻¹⁰	1
Br_2	52	1291	1.2×10 ⁻¹⁰	1
Br_3	103	1070	0.7×10 ⁻¹⁰	1
Br_4	22	1414	2.8×10 ⁻¹⁰	1
Br_5	38	885	1.4×10 ⁻¹⁰	1
Average	56	1158	1.4×10 ⁻¹⁰	1
HCO ₃ _1	62	97	4.5×10 ⁻⁹	0.9
HCO ₃ _2	93	11	5.3×10 ⁻¹⁰	1
HCO ₃ _3	87	56	1.2×10 ⁻⁹	1
HCO ₃ _4	119	78	2.2×10 ⁻⁸	0.8
HCO ₃ _5	58	145	6.7×10 ⁻¹⁰	1
HCO ₃ _6	115	48	1.1×10 ⁻⁷	0.75
Average	84	77	5.8×10 ⁻⁹	0.94
OH_1	76	56	1.7×10 ⁻⁸	0.85
OH_2	76	37	2.5×10 ⁻⁸	0.85
OH_3	67	66	1.7×10 ⁻⁸	0.85
OH_4	75	42	1.1×10 ⁻⁸	0.9
OH_5	74	56	7.6×10 ⁻⁹	0.9
OH_6	58	89	6.0×10 ⁻⁹	0.9
Average	74	51	1.6×10 ⁻⁸	0.87

 Table S1 Fit parameters from dry Nyquist equivalent-circuit models.

Table S2 Fit parameters from water-swelled Nyquist equivalent-circuit models.

Sample ID	R1	R2	Q ₁	Q ₁ _a	Q ₂	Q ₂ _a
Br_1	24	23	7.3×10 ⁻⁹	1	5.4×10 ⁻⁵	0.68
Br_2	15	68	4.7×10 ⁻⁹	1	4.2×10 ⁻⁵	0.70
Br_3	21	34	6.8×10 ⁻⁹	1	6.2×10 ⁻⁵	0.70
Br_4	29	23	8.7×10 ⁻⁹	1	2.0×10 ⁻⁴	0.59
average	22	37	6.9×10 ⁻⁹	1	9.2×10 ⁻⁵	0.67
HCO ₃ 1	20	7	5.4×10 ⁻⁷	0.95	9.2×10 ⁻⁵	0.67
HCO ₃ _2	19	11	1.8×10 ⁻⁷	1	1.0×10 ⁻⁴	0.66
HCO ₃ _3	30	11	2.3×10 ⁻⁷	0.97	1.0×10 ⁻⁴	0.67
average	23	10	3.2×10 ⁻⁷	0.97	9.8×10 ⁻⁵	0.67
OH_1	19	26	7.3×10 ⁻⁹	1	8.3×10 ⁻⁵	0.72
OH_2	0	17	1.1×10 ⁻⁵	0.45	1.9×10 ⁻⁴	0.63
OH_3	21	14	6.5×10 ⁻⁶	0.8	4.9×10 ⁻⁵	0.71
OH_4	16	8	2.2×10 ⁻⁶	0.91	5.5×10 ⁻⁵	0.71
OH_5	13	9	5.5×10 ⁻⁶	0.85	5.2×10 ⁻⁵	0.74
average	14	15	5.0×10 ⁻⁶	0.8	8.6×10 ⁻⁵	0.70

Fig. S2 Water uptake in hydration number (λ) and percent mass (of the dry membrane mass) for pDMAMS⁺(Br⁻) equilibrated over P₂O₅ (0% RH), various salt solutions (11–97% RH), and in liquid deionized water (100% RH).

Fig. S3 EIS spectra of pDMAMS⁺(Br-) showing adequate electrode-electrolyte contact. Inset: current response of potentiostatic hold at 0.1 V.