Simultaneous photo-induced polymerization and surface modification by microfluidic spinning to produce functionalized polymer microfibers

Wasif Razzaq,^{a,b} Christophe A. Serra,^a Candice Dussouillez,^c Naji Kharouf,^d Irene Andrea Acuña Mejía,^a Antoine Kichler,^c Delphine Chan-Seng^a

^a Université de Strasbourg, CNRS, Institut Charles Sadron UPR 22, F-67000 Strasbourg, France

^b Department of Materials, National Textile University, Sheikhupura Road, Faisalabad 37610, Pakistan

^c Université de Strasbourg, CNRS, Laboratoire de Conception et Applications des Molécules Bioactives UMR 7199, 3Bio Team, F-67000 Strasbourg, France

^d INSERM, UMR_S 1121 Biomaterials and Bioengineering, 1 rue Eugène Boeckel, 67000 Strasbourg, France and Université de Strasbourg, Faculté de Chirurgie Dentaire, 8 rue Sainte Elisabeth, 67000 Strasbourg, France

TABLE OF CONTENT

Fig. S1 EDS spectra of a) unmodified, b) $(SH)_3$ -modified, and c) $(NH_2)_3$ -modified fibers.

2

Fig. S2 Simultaneous photopolymerization and surface modification to produce amine-functionalized microfibers using either hexamethylenediamine/ $(NH_2)_2$ (left) or tris(2-aminoethyl)amine/ $(NH_2)_3$ (right) confirmed by Kaiser test (blue-violet solution characteristic of the Ruhemann's complex formed by reaction of the ninhydrin with the primary amines).

Fig. S3 Simultaneous photopolymerization and surface modification to produce thiol-functionalized microparticles using trimethylolpropane tris(3-mercaptopropionate) confirmed by Ellman's test (yellow color due to the reaction of free thiols with 5,5'-dithio-bis-(2-nitrobenzoic acid) in inset) and SEM images. Unlike the SEM images presented in the main article and Figure S3, these images were obtained on a Hitachi SU 8010 Ultra High-Resolution FE-SEM microscope. 3

Fig. S4 SEM images of microfibers incubated with RAW264.7 cells for 48 h: a) unmodified fibers and aminemodified fibers prepared using b) 1, c) 5, and d) 10 mol% of $(NH_2)_3$.

Fig. S5 Light microscopy of fibers obtained using 10 mol% of $(SH)_3$ in the sheath phase and after 26 h of incubation with murine RAW264.7 macrophages. 4

Fig. S6. Evaluation of the biocompatibility of the neutral and 10%-modified fibers. RAW cells were incubated with increasing amounts of non-modified and 10% thiol-modified fibers and the cell viability was determined after 48 hours using a CellTiter-Glo 2.0 Cell viability assay. 5

Fig. S7Light microscopy of 10% thiol-modified fibers after 48 hours of incubation with HCT116 cells. Celladhesion was observed as shown by the black arrows.5

Fig. S1 EDS spectra of a) unmodified, b) (SH)₃-modified, and c) (NH₂)₃-modified fibers.

Fig. S2 Simultaneous photopolymerization and surface modification to produce amine-functionalized microfibers using either hexamethylenediamine/ $(NH_2)_2$ (left) or tris(2-aminoethyl)amine/ $(NH_2)_3$ (right) confirmed by Kaiser test (blue-violet solution characteristic of the Ruhemann's complex formed by reaction of the ninhydrin with the primary amines).

Fig. S3 Simultaneous photopolymerization and surface modification to produce thiol-functionalized microparticles using trimethylolpropane tris(3-mercaptopropionate) confirmed by Ellman's test (yellow color due to the reaction of free thiols with 5,5'-dithio-bis-(2-nitrobenzoic acid) in inset) and SEM images. Unlike the SEM images presented in the main article and Figure S3, these images were obtained on a Hitachi SU 8010 Ultra High-Resolution FE-SEM microscope.

Fig. S4 SEM images of microfibers incubated with RAW264.7 cells for 48 h: a) unmodified fibers and aminemodified fibers prepared using b) 1, c) 5, and d) 10 mol% of $(NH_2)_3$.

Fig. S5 Light microscopy of fibers obtained using 10 mol% of $(SH)_3$ in the sheath phase and after 26 h of incubation with murine RAW264.7 macrophages.

Fig. S6. Evaluation of the biocompatibility of the neutral and 10%-modified fibers. RAW cells were incubated with increasing amounts of non-modified and 10% thiol-modified fibers and the cell viability was determined after 48 hours using a CellTiter-Glo 2.0 Cell viability assay.

Fig. S7 Light microscopy of 10% thiol-modified fibers after 48 hours of incubation with HCT116 cells. Cell adhesion was observed as shown by the black arrows.