Supporting Information

Poly(2-ethyl-aniline) blend membrane for vanadium redox flow battery

Priyanka P. Bavdane^{a,b}, Sooraj Sreenath^{a,b}, Devendra Y. Nikumbe^{a,b}, Bhavana Bhatt^a, Chetan M. Pawar^{a,b}, Vidhiben Dave^{a,b}, and Rajaram K. Nagarale^{a,b*}

^a Electro Membrane Processes Laboratory, Membrane Science and Separation Technology Division, CSIR-Central Salt and Marine Chemicals Research Institute, Bhavnagar 364002, India

^bAcademy of Scientific and Innovative Research (AcSIR), Ghaziabad- 201002, India

Fig. S4. Dimension and weight change evaluation of E-PANI composite membranes with respect to time

Table S1: The comparison of VRFB performance of PANI composite membranes with that of Prepared E-PANI-SPES

Membrane code	VRFB study	CD	CE	VE	EE	Charge-	Ref.
		mA/cm ²	%	%	%	discharge	no
						cycling	
						stability	
SPEEK/PANi-GO-2	Rate performance	20	96.5	88.0	84.0	300 cycle	[1]
		30	97.5	84.0	82.0	at 30mA	
		40	98.0	78.0	77.0	cm ⁻²	
		50	98.5	75.0	74.0		
		60	99.1	70.0	69.0		
	Cycling test	30ª	98.5	83.0	81.7		
SPEEK-E600/PANI =	Rate performance	20	97.0	94.0	91.0	30 cycles a	t [2
80/20		30	98.0	93.0	92.0	40 mA cm ⁻	2]
		40	98.5	92.5	91.0		
		50	99.0	92.0	90.0		
	Cycling test	40 ^b	98.4	92.8	91.3		
EP3	Rate performance	20	90.5	85.0	77.0	300 cycle a	t [*
		40	92.0	83.0	76.0	140mA cm ⁻	-2]
		60	94.3	80.0	75.0		
		80	95.5	73.0	70.0		
		100	98.0	63.0	62.0		
	Cycling test	140	99.5	53.0	52.7		

composite membranes

Foot note: Cycle no. a=100, b=30, * present work, SPEEK/PANi-GO-2: SPEEK/polyaniline-functionalized graphene oxide

Fig. S5. Cycling battery performance of Nafion@117 at 100 mA cm⁻²

Table S2. Comparative literature values of battery performance ion exchange membrane with synthesized membrane in VRFB

Membrane	Current	CE	VE	EE	References
	density	(%)	(%)	(%)	
	(cm ⁻²)				
SPEEK/HMN-6 composite membrane	120	~98	~80	82.1	3

S/O-bPn-1.5% composite membrane	100	98.3	~88	86.6	4
PAES-8mPip-x	60	94.78	90.15	85.44	5
bSPI/s-MWCNTs-2% composite membrane	80-160	~96	80%	77	6
sPSScl9	180	~92	~80	88	7
Sulfonated polyethylene–styrene– divinylbenzene	140	95	63	67	8
Poly (phenylene ether) QCPPAE	50	99.00	88	89	9
SPI/0.5% PDAP	100	96	87.02	84.04	10
s-FSPI	60	99	77.30	77	11
C6QPSF	60	98	93	91.10	12
SPEEK/ ETS10/ PTFE	100	98	78.80	77.90	13
MD2.0-10	80	99.30	83	82	14
p-TPN1	100	100	84.50	84.70	15
Sulfonated poly(terphenylene) (SPTP) blended with Polybenzimidazole (PBI)	100	99.50		86.20	16
TA15-SPBP membrane	80	99.1		87	17
PC50NB30	200	94	82	78	18
Q/S-AIEMs	20	98	~90	90	19
EP3	140	99.5	53.0	52.7	This work

Footprint: SPEEK- sulfonated poly(ether ether ketone), HMN- Phosphotungstic acid (HPW)-metal organic framework (MIL-101-NH2) nanohybrids, S/O- - sulfonated poly(ether ether ketone)/bPn- phosphorus nanosheet, PAES-8mPip-x- Piperidine ions based on poly(aryl ether sulfone); bSPI/s-MWCNTs-2% - sulfonated polyimide (bSPI)/Sulfonated multiwalled carbon nanotubes; sPSScl9- sulfonated poly(phenylene sulfide sulfone) with 9% crosslinking, QCPPAE – Quaternised chloromethylated poly(p-phenylene) and poly(arylene ether), SPI/s-MWCNTs-2% - sulfonated polyimide (SPI) blend with poly [bis (44²- diaminoberraidine-2,2-distillocinic acid) phosphazene] (PDAP), s-FSPI - fluorinated sulfonated polyimide (SPI) set for the synthesis of the synthesynthesis of the synthesis of the synthesis of the s

Fig. S5 Represent the surface morphology of EP3 membrane a) before and b) after battery performance showing no leaching of E-PANI.

Table S3 Comparison of electrochemical properties for E-PANI composite membranes and SPES before and after Battery performance

Membrane	Water content (%)		IEC (meq g ⁻¹)		Young modulus (MPa)		
code	Before	After	Before	After	Before	After	
SPES	30.4	35.1	1.42	0.97	189	186.2	
EP1	17.1	21.6	1.32	0.91	251	245	
EP2	16.6	29.4	1.25	0.91	256	248	
EP3	19.8	34.7	1.22	0.86	273	266	

Reference

- [1] Y. Zhang, H. Wang, W. Yu, H. Shi, Structure and Properties of Sulfonated Poly(ether ether ketone) Hybrid Membrane with Polyaniline-Chains-Modified Graphene Oxide and Its Application for Vanadium Redox Flow Battery, ChemistrySelect 3 (2018) 9249-9258. https://doi.org/10.1002/slct.201801548
- [2] O. David, K. Percin, T. Luo, Y. Gendel, M. Wessling, Proton-exchange membranes based on sulfonated poly(ether ether ketone)/polyaniline blends for all- and air-vanadium redox flow battery applications, J Energy Storage, 1 (2015) 65-71. <u>http://dx.doi.org/10.1016/j.est.2015.01.001</u>
- [3] Zhai, S.; Lu. Z.; Ai, Y.; Liu, X.; Wang, Q.; Lin, J.; He, S.; Tian, M.; Chen L. Highly selective proton exchange membranes for vanadium redox flow batteries enabled by the incorporation of water-insoluble phosphotungstic acid-metal organic framework nanohybrids. Journal of Membrane Science 2022, 645, 120214.
- [4] Afzal.; Chen, W.; Pang, B.; Yan, X.; Jiang, X.; Cui, F.; Wu, X.; He, G. Oxidized black phosphorus nanosheets/sulfonated poly (ether ether ketone) composite membrane for vanadium redox flow battery. Journal of Membrane Science 2022, 644, 120084.
- [5] Tao, Z.; Wang, C.; Cai, S.; Qian, J.; Li J. Efficiency and Oxidation Performance of Densely Flexible Side-Chain Piperidinium-Functionalized Anion Exchange Membranes for Vanadium Redox Flow Batteries. ACS Appl. Energy Mater. 2021, 4, 14488–14496.
- [6] Liu, J.; Duan, H.; Xu, W.; Long, J.; Huang, W.; Luo H.; Li, J.; Zhang, Y.; Branched sulfonated polyimide/s-MWCNTs composite membranes for vanadium redox flow battery application. International journal of hydrogen energy 2021.

- [7] Gigli, M.; Mecheri, B.; Licoccia, S.; D'Epifanio, A. Crosslinked sulfonated poly(phenylene sulfide sulfone) membranesfor vanadium redox flow batteries. Sustainable Materials and Technologies 2021, 28, e00249.
- [8] Sreenath, S.; Pawar, C. M.; Bavdane, P.; Nikumbe D. Y.; Nagarale, R. K. A sulfonated polyethylene–styrene cation exchange membrane: a potential separator material in vanadium redox flow battery applications. Energy Adv. 2022.
- [9] Chaa, M. S.; Lee, J. Y.; Kim, T.; Jeong, H. Y.; Shina, H. Y.; Oh, S. G.; Hong, Y. T. Preparation and characterization of crosslinked anion exchange membrane (AEM) materials with poly(phenylene ether)-based short hydrophilic block for use in electrochemical applications. Journal of Membrane Science 2017, 16, 32307-9.
- [10] Zhang, M.; Wang, G.; Li, F.; He, Z.; Zhang J.; Chen, J.; Wang, R. High conductivity membrane containing polyphosphazene derivatives for vanadium redox flow battery. Journal of Membrane Science 2021, 630, 119322.
- [11] Li, J.; Yuan, X.; Liu, S.; He, Z.; Zhou, Z.; Li, A. A Low-Cost and High-Performance Sulfonated Polyimide Proton Conductive Membrane for Vanadium Redox Flow/Static Batteries. ACS Appl. Mater. Interfaces 2017, 9, 38, 32643–32651.
- Si, J.; Lv, Y.; Lu, S.; Xiang, Y. Microscopic phase-segregated quaternary ammonia polysulfone membrane for vanadium redox flow batteries. Journal of Power Sources 2019, 428, 88–92.
- [13] Kim, J.; Lee, Y.; Jeon, J. D.; Kwak, S. Y. Ion-exchange composite membranes porefilled with sulfonated poly(ether ether ketone) and Engelhard titanosilicate-10 for improved performance of vanadium redox flow batteries. Journal of Power Sources 2018, 383, 1–9.
- [14] Teng, X.; Guo, Y.; Liu, D.; Li, G.; Yu, C.; Dai, J. A polydopamine-coated polyamide thin film composite membrane with enhanced selectivity and stability for vanadium redox flow battery. Journal of Membrane Science 2020, 601, 117906.

- [15] Jong, W.; Jeon, Y.; Han, J.; Kim, J. H.; Bae, C.; Kim, S. Poly(terphenylene) Anion Exchange Membranes with High Conductivity and Low Vanadium Permeability for Vanadium Redox Flow Batteries (VRFBs). Journal of Membrane Science 2020, 598, 117665.
- [16] Xu, J. Zha, H.; Li, W.; Li, P.; Chen. C.; Yue, Z.; Zou, L.; Yang, H. Facile strategy for preparing a novel reinforced blend membrane with high cycling stability for vanadium redox flow batteries. Chemical Engineering Journal, 2022, 433 133197.
- [17] Xu,J.; Dong, S.; Li, P.; Li, W.; Tian, F.; Wang, W.; Cheng, C.; Yue Z.; Yang, H. Novel ether-free sulfonated poly(biphenyl) tethered with tertiary amine groups as highly stable amphoteric ionic exchange membranes for vanadium redox flow battery. Chemical Engineering Journal 2021, 424, 130314.
- [18] Chen, Y.; Zhang, S.; Jin, J.; Liu, C.; Liu, Q.; Jian, X. Poly(phthalazinone ether ketone) Amphoteric Ion Exchange Membranes with Low Water Transport and Vanadium Permeability for Vanadium Redox Flow Battery Application. ACS Appl. Energy Mater. 2019, 2, 8207–8218.
- [19] Kim, J, Q.; So, S.; Kim, H.; Choi, S, Q.; Highly Ordered Ultrathin Perfluorinated Sulfonic Acid Ionomer Membranes for Vanadium Redox Flow Battery. ACS Energy Lett. 2021, 6, 184–192.