Electronic Supplementary Material (ESI) for RSC Applied Polymers. This journal is © The Royal Society of Chemistry 2024

Supporting Information

Hydrogen bonded polymer complex thin films

for highly stretchable gas barrier

Sarah G. Fisher,^a Hsu-Cheng Chiang,^a Ethan T. Iverson,^a Edward Chang,^b Jaime C. Grunlan^{*a,b,c}

^aDepartment of Chemistry, Texas A&M University, College Station, TX 77843, USA

^bDepartment of Mechanical Engineering, Texas A&M University, College Station, TX 77843, USA

^cDepartment of Materials Science & Engineering, Texas A&M University, College Station, TX 77843, USA

*Corresponding author: Jaime C. Grunlan (Email: jgrunlan@tamu.edu)

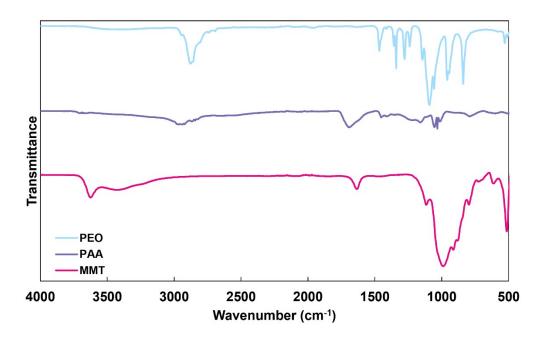


Fig. S1 FTIR spectra of PEO, PAA, and MMT.

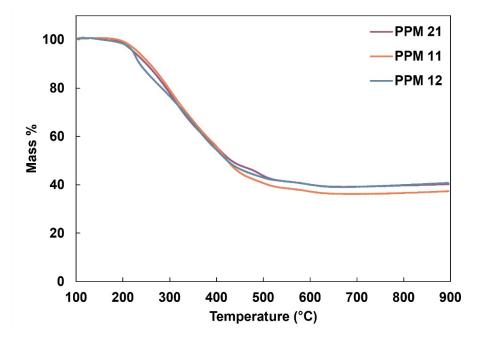


Fig. S2 TGA thermograms of HBPCs under air.

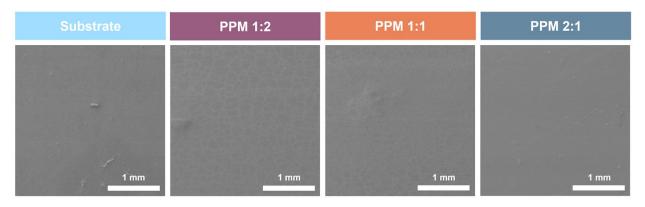


Fig. S3 SEM images of uncoated and coated rubber with various HBPC recipes.

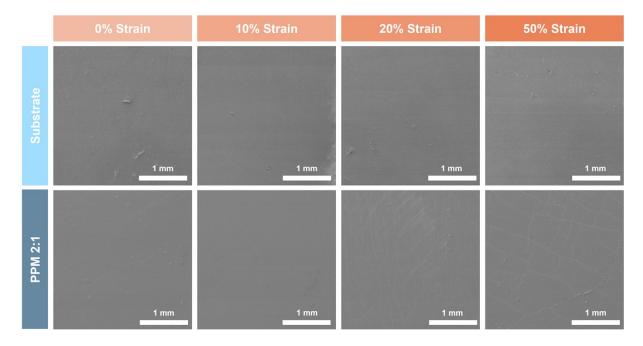


Fig. S4 SEM images of uncoated rubber and rubber coated with PPM 2:1 after 0%, 10%, 20% and 50% strain.

Sample	Film Thickness (µm)	Coat Weight (g / m²)	Strain (%)	OTR (cc / (m ² · day))	Film Permeability* (·10 ⁻¹⁶ cc cm / (cm ² s Pa))
Substrate			0	2110	
			10	2030	—
			20	2180	
			50	2100	
PPM 1:2	1.07 ± 0.01	0.23 ± 0.17	0	1150	61.8
PPM 1:1	1.63 ± 0.03	1.52 ± 0.29	0	262	11.2
PPM 2:1	1.79 ± 0.01	1.75 ± 0.66	0	21.4	0.9
			10	20.1	0.8
			20	40.4	1.7
			50	138	6.0

 Table S1 Barrier properties of uncoated and coated natural rubber

*Film permeability was decoupled from the substrate using a previously described method.^{S1}

Reference

S1) A. P. Roberts, B. M. Henry, A. P. Sutton, C. R. M. Grovenor, G. A. D. Briggs, T. Miyamoto, M. Kano, Y. Tsukahara and M. Yanaka, *J. Membr. Sci.*, 2002, **208**, 75–88.