## **Electronic Supplementary Information**

Dynamic quenching mechanism based optical detection of carcinogenic Cr(VI) in water and on economical paper test strips via a conjugated polymer

Arvin Sain Tanwar,<sup>a,b</sup> Moirangthem Anita Chanu,<sup>a</sup> Retwik Parui,<sup>a</sup> Debika Barman,<sup>a</sup> Yeon-Ho Im, <sup>b,\*</sup> and Parameswar Krishnan Iyer<sup>a,c,\*</sup>

<sup>a</sup>Department of Chemistry, Indian Institute of Technology Guwahati, Guwahati-781039, India. <sup>b</sup>School of Semiconductor and Chemical Engineering, Clean Energy Research Center, Jeonbuk National University, Jeonju, Jeonbuk 54896, Republic of Korea. <sup>c</sup>Centre for Nanotechnology, Indian Institute of Technology Guwahati, Guwahati, 781039, India.

EMAIL ADDRESS: pki@iitg.ac.in (P. K. Iyer); yeonhoim@jbnu.ac.kr (Y. H. Im)

AUTHOR FAX: +91 361 258 2349

Table S1: Fluorescence lifetime decay of each component and their fractions in water.

| Sample                                                     | $\tau_1$ | %      | τ <sub>2</sub> | %      | χ²    | $\tau_{avg}$ |
|------------------------------------------------------------|----------|--------|----------------|--------|-------|--------------|
|                                                            | (ns)     |        | (ns)           |        |       | (ns)         |
| PFPy                                                       | 1.281    | 24534  | 4.836          | 75.466 | 1.030 | 3.96         |
| PFPy + Cr(VI)<br>(6.66 μM)                                 | 0.993    | 42.583 | 4.118          | 57.417 | 1.064 | 2.78         |
| $\frac{\text{PFPy} + \text{Cr(VI)}}{(13.3 \ \mu\text{M})}$ | 0.709    | 48.564 | 3.274          | 51.436 | 1.060 | 2.16         |
| $\frac{\text{PFPy} + \text{Cr(VI)}}{(20.0 \ \mu\text{M})}$ | 0.581    | 55.356 | 2.716          | 44.644 | 1.041 | 1.53         |



Scheme S1. Synthesis of PFPy (a) pyridine, DMF, 70°C, 24 h.



Fig. S1 1H NMR spectra of PFPy.



Fig. S2 UV-Vis spectrum and PL spectrum of PFPy.



Fig. S3 Fluorescence intensity of PFPy vs Cr(VI) concentration.

 $LOD = 3 \times S.D./k$  $LOD = 3 \times 616.16 / (8 \times 10^{10})$ LOD = 23.1 nM



Fig. S4 PL spectra of PFPy in presence of various metal ions in water.



Fig. S5 PL spectra of PFPy in presence of various anions in water.



Fig. S6 PL spectra of PFPy (black), PFPy in presence of Cr(III) (20  $\mu$ M) (Red), followed by addition of Cr(VI) (20  $\mu$ M).



Fig. S7 PL spectra of PFPy (black), PFPy in presence of Cd(II) (20  $\mu$ M) (Red), followed by addition of Cr(VI) (20  $\mu$ M).



Fig. S8 PL spectra of PFPy (black), PFPy in presence of Cu(II) (20  $\mu$ M) (Red), followed by addition of Cr(VI) (20  $\mu$ M).



Fig. S9 PL spectra of PFPy (black), PFPy in presence of Fe(II) (20  $\mu$ M) (Red), followed by addition of Cr(VI) (20  $\mu$ M).



Fig. S10 PL spectra of PFPy (black), PFPy in presence of Fe(III) (20  $\mu$ M) (Red), followed by addition of Cr(VI) (20  $\mu$ M).



Fig. S11 PL spectra of PFPy (black), PFPy in presence of Hg(II) (20  $\mu$ M) (Red), followed by addition of Cr(VI) (20  $\mu$ M).



Fig. S12 PL spectra of PFPy (black), PFPy in presence of La(III) (20  $\mu$ M) (Red), followed by addition of Cr(VI) (20  $\mu$ M).



Fig. S13 PL spectra of PFPy (black), PFPy in presence of Mn(II) (20  $\mu$ M) (Red), followed by addition of Cr(VI) (20  $\mu$ M).



Fig. S14 PL spectra of PFPy (black), PFPy in presence of Ni(II) (20  $\mu$ M) (Red), followed by addition of Cr(VI) (20  $\mu$ M).



Fig. S15 PL spectra of PFPy (black), PFPy in presence of Pb(II) (20  $\mu$ M) (Red), followed by addition of Cr(VI) (20  $\mu$ M).



Fig. S16 PL spectra of PFPy (black), PFPy in presence of Zn(II) (20  $\mu$ M) (Red), followed by addition of Cr(VI) (20  $\mu$ M).



Fig. S17 PL spectra of PFPy (black), PFPy in presence of  $BF_4^-$  (20  $\mu$ M) (Red), followed by addition of Cr(VI) (20  $\mu$ M).



Fig. S18 PL spectra of PFPy (black), PFPy in presence of  $CO^{2-3}$  (20  $\mu$ M) (Red), followed by addition of Cr(VI) (20  $\mu$ M).



Fig. S19 PL spectra of PFPy (black), PFPy in presence of  $H_2PO_4^-$  (20  $\mu$ M) (Red), followed by addition of Cr(VI) (20  $\mu$ M).



Fig. S20 PL spectra of PFPy (black), PFPy in presence of HPO<sup>2-4</sup> (20  $\mu$ M) (Red), followed by addition of Cr(VI) (20  $\mu$ M).



Fig. S21 PL spectra of PFPy (black), PFPy in presence of  $N_3^-$  (20  $\mu$ M) (Red), followed by addition of Cr(VI) (20  $\mu$ M).



Fig. S22 PL spectra of PFPy (black), PFPy in presence of  $NO_3^-$  (20  $\mu$ M) (Red), followed by addition of Cr(VI) (20  $\mu$ M).



Fig. S23 PL spectra of PFPy (black), PFPy in presence of  $PO_4^{3-}$  (20  $\mu$ M) (Red), followed by addition of Cr(VI) (20  $\mu$ M).

| Solvent | Förster distance $R_0$ (Å) | J ( $\lambda$ ) values | RET efficiency |  |
|---------|----------------------------|------------------------|----------------|--|
|         |                            | $(M^{-1}cm^{-1}nm^4)$  | (%)            |  |
| water   | 11.32                      | $1.92 \times 10^{11}$  | 61.63          |  |

Table S2. Förster distance, Overlap integral J ( $\lambda$ ) values and RET efficiency calculated for Cr(VI).

Table S3. IFE corrections for quenching of PFPy by Cr(VI).

| Cr(VI) [µM] | I <sub>obs</sub> | I <sub>corr</sub> | I <sub>corr</sub> /I <sub>obs</sub> | I <sub>corr</sub> /I <sub>corr,o</sub> | E <sub>obs</sub> | E <sub>corr</sub> |
|-------------|------------------|-------------------|-------------------------------------|----------------------------------------|------------------|-------------------|
|             |                  |                   | Correction factor<br>(CF)           |                                        | (%)              | (%)               |
| 0           | 263622.4958      | 268827.0506       | 1.0197                              | 1                                      | 0                | 0                 |
| 0.333       | 148114.007       | 150652.9469       | 1.0171                              | 0.5604                                 | 43.816           | 43.959            |
| 0.666       | 108507.3325      | 110463.9547       | 1.018                               | 0.4109                                 | 58.84            | 58.909            |
| 1           | 82279.20539      | 83891.62152       | 1.0196                              | 0.3121                                 | 68.789           | 68.793            |
| 1.333       | 70238.41289      | 71800.37123       | 1.0222                              | 0.2671                                 | 73.356           | 73.291            |
| 1.666       | 56550.82416      | 57928.25398       | 1.0244                              | 0.2155                                 | 78.549           | 78.451            |
| 2           | 48193.63477      | 49516.86969       | 1.0275                              | 0.1842                                 | 81.719           | 81.58             |



Fig. S24 PL spectra of PFPy in the presence of various oxoanions.



Fig. S25 PL spectra of PFPy in the presence of various electrolytes.



**Fig. S26** G values obtained for various paper test strips after exposure to various concentrations of Cr(VI) solutions. (inset: a linear plot of G value vs Log (concentration of Cr(VI)).



**Fig. S27** R values obtained for various paper test strips after exposure to various concentrations of Cr(VI) solutions. (inset: a linear plot of R-value vs Log (concentration of Cr(VI)).



Fig. S28 Calibration plot obtained for Cr(VI).



Fig. S29 PL spectra of PFPy with different samples of lake water spiked with different Cr(VI) concentrations.