Supporting Information for

Direct Ink Writing of Polyimide Aerogels for Battery Thermal Mitigation

Ciera E. Cipriani,¹ Donald A. Dornbusch,² Stephanie L. Vivod,^{2*} Emily B. Pentzer^{*1,3}

¹Department of Materials Science and Engineering, Texas A&M University, 3003 TAMU, College Station, Texas 77843, United States

²NASA Glenn Research Center, 21000 Brookpark Road, Cleveland, Ohio 44135, United States

³Department of Chemistry, Texas A&M University, 3255 TAMU, College Station, Texas 77843, United States

*Email: emilypentzer@tamu.edu

Table S1. Dimensions, linear shrinkage values, masses, and densities of cast and printed compression cylinders.

	Height (mm)	Diameter (mm)	Linear Shrinkage (%)	Mass (g)	Density (g/cm³)
	15.42	12.48	12.30	0.206	0.109
Cast	11.34	12.54	11.88	0.153	0.109
	14.9	12.55	11.81	0.200	0.109
	11.28	12.55	11.81	0.152	0.109
	12.48	12.54	11.88	0.167	0.108
	10.46	11.85	16.67	0.120	0.093
Printed	10.34	11.43	19.67	0.118	0.100
	8.56	12.45	12.53	0.123	0.103
	10.87	12.68	10.87	0.154	0.105
	10.28	12.41	12.80	0.124	0.100

Figure S1. FTIR spectra during various timepoints after addition of TEA catalyst, normalized at 1172 cm⁻¹. (A, left) Untreated sol, showing peaks corresponding to imide C=O at 1724 cm⁻¹ and C-F at 1172 cm⁻¹. (A, right) Expansion of imide C=O region indicating increasing transmittance with increasing reaction time in untreated sol. (B, left) Heated sol. (B, right) Expansion of imide C=O region indicating increasing transmittance with increasing reaction time in heated sol.

Figure S2. Ratios of intensities of C=O and C-F peaks in FTIR spectra over reaction time.

Figure S3. G' and G" as a function of strain amplitude for three samples of (A) untreated sol, (B) aged sol, (C) ink.

Figure S4. Viscosity as a function of shear rate for three samples of (A) untreated sol, (B) aged sol, (C) ink.

Figure S5. Viscosity as a function of time during the 3ITT for three samples of (A) untreated sol, (B) aged sol, (C) ink.

Figure S6. G' and G" as a function of time and gel points for three samples of (A) untreated sol and (B) ink.

Figure S7. Skeletal density of (A) cast aerogel and (B) printed aerogel throughout 50 chamber filling cycles.

Figure S8. Scanning electron micrographs of fractured surfaces of (A) cast aerogel and (B) printed aerogel.

Figure S9. Adsorption-desorption curves of nitrogen onto (A) cast aerogel and (B) printed aerogel.

Figure S10. Compression test data. (A) Cast compression cylinder before (left) and after (right) testing. (B) DIW of compression cylinder. (C) Printed compression cylinder before (left) and after (right) testing. (D) Stress-strain profiles of three samples of cast aerogel. (E) Stress-strain profiles of three samples of printed aerogel.

	Thermal Conductivity (mW/m K)						
Temperature (°C)	Cast Aerogel			Printed Aerogel			
-50	39.6	39.3	39.4	24.0	24.4	23.4	
-25	38.9	39.7	40.5	27.1	26.3	27.3	
0	39.1	39.6	39.6	30.7	30.8	30.6	
25	37.8	41.7	40.6	37.2	38.5	37.6	
50	34.4	34.6	34.5	35.2	34.5	34.7	
75	32.4	32.9	32.7	36.9	36.2	37.1	
100	33.4	32.5	33.6	38.3	37.5	37.9	
125	36.5	37.0	36.4	42.9	41.6	42.4	
150	39.5	40.3	39.2	42.8	42.8	43.8	

Table S2. Thermal conductivities of cast and printed aerogels at various temperatures.

Table S3. Surface temperatures of heating plate and aerogel throughout thermal insulation experiment. Each row corresponds to one temperature setting, and three measurements were taken on each surface at each setting 5 min after the plate temperature equilibrated.

Heating Plate Temperature (°C)			Aerogel Temperature (°C)			
43.0	42.2	42.6	24.6	24.4	24.6	
51.6	53.6	50.0	25.4	26.2	25.0	
81.9	82.9	84.0	26.0	26.4	25.7	
105.8	111.9	112.8	26.4	26.4	25.3	
121.7	117.4	123.0	27.4	26.6	25.9	

Table S4. Surface temperatures of heating plate and aerogel over time at maximum heating plate temperature (approximately 120 °C).

Time (min)	Heating	Plate Tempera	ture (°C)	Aerogel Temperature (°C)			
5	121.7	117.4	123.0	27.4	26.6	25.9	
30	119.8	121.2	120.9	28.8	29.2	30.0	
60	120.1	120.4	118.9	29.3	30.9	30.0	
90	118.8	119.6	120.8	30.1	30.9	29.4	
120	119.1	119.2	120.5	30.0	28.9	29.7	