Supporting Information

Closing the Loop: Polyimine Thermosets from Furfural Derived Bioresources

Tankut Türel,^{a+} Keita Saito,^{a+} Ivona Glišić,^a Tim Middelhoek^a and Željko Tomović^{a*}

a. Polymer Performance Materials Group, Department of Chemical Engineering and Chemistry, Eindhoven University of Technology, 5600 MB Eindhoven, The Netherlands.

Contents

1.	Synthesis, characterization and stability of OBMF	S2
2.	Synthesis and structural characterization of the polyimine networks	S5
3.	Stability of polyimine networks in organic solvents and water	S6
4.	Thermal analysis of polyimine networks	S8
5.	Thermomechanical analysis of polyimine networks	S10
6.	Mechanical analysis	S11
7.	Scanning electron microscopy	S11
8.	Chemical recycling of the P(FIm)-TREN network	S12

1. Synthesis, characterization and stability of OBMF

Figure S1. ¹H NMR (A) and ¹³C NMR (B) spectra of OBMF recorded in CDCl₃.

Figure S2. FTIR (A) and MALDI-TOF (B) spectra of OBMF. α -Cyano-4-hydroxycinnamic acid (CHCA) was used as matrix in MALDI measurement. The peaks assigned with x corresponds to the matrix peaks.

Figure S3. ¹H NMR (A) and ¹³C NMR (B) spectra of OBMF recorded in $CDCl_3$, after keeping the solids 1-year under ambient conditions.

	Concentration of HMF (mol/L)	Isolated Yield (%)
Entry 1	0.4	64
Entry 2	0.2	67
Entry 3	0.1	79

Table S1. Isolated yields of OBMF at different concentrations of HMF.

2. Synthesis and structural characterization of the polyimine networks

Table S2. Recipes for the preparation of polyimine networks.

	OBMF	Diamine	Triamine	
P(FIm)-TREN	6 mmol	0	TREN 4 mmol	
CFRP(FIm)-TREN	7.8 mmol	0	TREN 5.2 mmol	
P(FIm)-PD	6 mmol	PD 3 mmol	TREN 2 mmol	
P(FIm)-MD	6 mmol	MD 3 mmol	TREN 2 mmol	
P(FIm)-FD	6 mmol	FD 3 mmol	TREN 2 mmol	
P(Flm)-Pri	6 mmol	Pri 3 mmol	TREN 2 mmol	

Figure S4. Characterization of the polyimine networks by FTIR.

3. Stability of polyimine networks in organic solvents and water

Solvents	MeOH	EtOH	Acetone	IPA	THF	n-hexane	H ₂ O
Swelling ratio (%)	82.6	49.2	16.2	0.8	22.5	0	37.6
Gel content (%)	88.1	95.9	99.8	99.2	99.7	98.3	98.3

Table S3. Swelling measurements of **P(FIm)-TREN** in different solvents at room temperature.

Figure S5. Photographs depicting the solvent resistance of **P(FIm)-TREN** in various organic solvents (A) and water (B) at different time intervals.

Table S4. Swelling measurements of **P(FIm)-FD** in different solvents at room temperature.

Solvents	MeOH	EtOH	Acetone	IPA	THF	n-hexane	H ₂ O
Swelling	19.2	0.6	0.17	3.7	0.5	0.6	18.4
ratio (%)							
Gel	95.2	99.6	99.3	99.4	99.8	99.6	97.3
content							
(%)							

Figure S6. Photographs depicting the solvent resistance of **P(FIm)-FD** in various organic solvents (A) and water (B) at different time intervals.

4. Thermal analysis of polyimine networks

Figure S7. Thermogravimetric analysis (TGA) of the polyimines, performed under N₂: **P(FIm)-TREN** (A), **P(FIm)-PD** (B), **P(FIm)-pMD** (C), **P(FIm)-FD** (D), **P(FIm)-Pri** (E).

Figure S8. Differential scanning calorimetry (DSC) of the polyimines, performed under N_2 . The heating rate of P(FIm)-FD and P(FIm)-TREN was 20 °C/min, whereas that of the others was 10 °C/min.

5. Thermomechanical analysis of polyimine networks

Figure S9. Dynamic mechanical analysis (DMA) of the polyimines: **P(FIm)-TREN** (A), **P(FIm)-PD** (B), **P(FIm)-pMD** (C), **P(FIm)-FD** (D), **P(FIm)-Pri** (E).

6. Mechanical analysis

Figure S10. Tensile stress-strain curve of the polyimine based carbon-fiber composite, **CFRP(FIm)-TREN**.

7. Scanning electron microscopy

Figure S11. Investigation of the fractured **CFRP(FIm)-TREN** composite by scanning electron microscopy. Scale bar is $30 \ \mu m$.

8. Chemical recycling of the P(FIm)-TREN network

Figure S12. Comparison of the virgin P(FIm)-TREN and recycled rP(FIm)-TREN: FTIR (A), DSC (B).