Supporting Information

Constructing P-doped self-assembled V₂C MXene/NiCo-layered double hydroxide hybrids toward advanced lithium storage

Xi Guo^a, Li Li^{a*}, Shuo Wang^a, Jian Shen^a, Yanan Xu^{b*}, Bingqiang Cao^a

^aSchool of Materials Science and Engineering, University of Jinan, Jinan 250022,

Shandong, China

^bFaculty of Education, Tianjin Normal University, Tianjin 300387, China.

*Corresponding-Author: Li Li

E-mail: mse_lil@ujn.edu.cn (L. Li)

Supplementary Figures

Figure S1 High-resolution XPS spectra of (a) O 1s/V 2p and (b) C 1s in the V_2C .

Figure S2 (a) SEM image of VAl₂C MAX; (b) TEM and (c) HRTEM images of V_2C

MXene, the inset corresponds to the SAED pattern of V_2C .

Figure S3 (a) SEM image of $V_2C/NiCo-LDH$ hybrids; (b) EDS results of $V_2C/NiCo-LDH$ hybrids.

Figure S4 Selected galvanostatic charge-discharge profiles of the (a)V_2C/NiCo-LDH and (b) V_2C electrodes.

Figure S5 Equivalent circuit model for Nyquist plots in Figure 4e.

The equivalent circuit model (Figure S5 includes ohmic resistance of the electrolyte and cell components (R_e), SEI layer resistance (R_f), charge-transfer resistance (R_{ct}), Warburg diffusion impedance (Z_w), dielectric relaxation capacitance (CPE_f) and double layer capacitance (CPE_{ct}).

Figure S6 Cycling behaviors of V_2C and V_2C /NiCo-LDH electrodes at 500 mA g⁻¹.

Figure S7 (a) CV curves of the V₂C/NiCo-LDH electrode at different scan rates as indicated; (b) Relationship between peak current and scan rate at different scan rates; (c) CV profile at 2 mV s⁻¹ with the capacitive contribution (red region); (d) Normalized contribution ratios of the capacitive (red) and diffusion-dominated (green) capacities at various sweep rates based on quantitative analysis.