Electronic Supplementary Information

Preparation of Polyaspartamide-based Adhesive Hydrogels via Schiff Base Reaction with Aldehyde-functionalized Dextran.

Hend A. Hegazy^{†a,c}, Hwi Hyun Moon^{†a}, Dong-Hyun Lee^b, Suk Ho Bhang^b, Youn-Chul Kim^{*b}, Changsik Song^{*a}, and Ji-Heung Kim^{*b}

^aDepartment of Chemistry, Sungkyunkwan University, Suwon, Gyeonggi 16419, Republic of Korea.

^bDepartment of Chemical Engineering, Sungkyunkwan University, Suwon, Gyeonggi 16419, Republic of Korea.

^cDepartment of Chemistry, Faculty of Science, Zagazig University, Zagazig, Egypt.

Email: younckim@skku.edu (YC); songcs@skku.edu (CS); kimjh@skku.edu (JH).

Table of Contents

1.	NMR s	spectra of the synthesized compounds	
Figure	S1.	¹ H NMR spectrum of PSI and PHyAm polymers (500 MHz, D ₂ O).	S3
Figure	S2.	¹ H NMR spectrum of dextran and Odex polymers (500 MHz, D ₂ O).	S4
2.	Supplem	ientary Figures	
Figure	S3.	FT-IR data of Odex, PHyAm, and Hydrogel polymers.	S5
Figure	S4.	Oscillation time scan test of gelation time.	S6
Figure	S5.	(a) Frequency dependence of the storage (G') and loss (G") modulus of $P_1O_{0.5}$ hydrogel, (b) Storage (G') and loss (G") modulus of P_1O_1 , (c) Storage (G') and loss (G") modulus of $P_1O_{1.5}$ at concentrations of 20, 30, and 40 wt%. (d) Damping factor data of hydrogel at different concentrations 20, 30, and 40 wt%.	S7
Figure	S6.	(a) SEM images of the $P_1O_{1.5}$ hydrogels formed at concentrations of 20, 30, and 40 wt%. (b) Average pore diameter of $P_1O_{1.5}$ hydrogel at concentrations of 20, 30, and 40 wt%.	S 8
Figure	S7.	 (a) Adhesion strength of hydrogel using 20 wt% P₁O₁ at different time on glass substrate. (b) Adhesion strength of hydrogel of different ratios after 10 min, (c) Adhesion strength of different ratios and concentrations after 12 h on glass substrate. (d) Wet and dry adhesion strength of hydrogel on porcine skin. 	S9

Figure S1. ¹H NMR spectrum of PSI and PHyAm polymers (500 MHz, D₂O).

Figure S2. ¹H NMR spectrum of dextran and Odex polymers (500 MHz, D₂O).

Figure S3. FT-IR data of Odex, PHyAm, and Hydrogel polymers.

Figure S4. Oscillation time scan test of gelation time.

Figure S5. (a) Frequency dependence of the storage (G') and loss (G") modulus of $P_1O_{0.5}$ hydrogel, (b) Storage (G') and loss (G") modulus of $P_1O_{1,5}$ (c) Storage (G') and loss (G") modulus of $P_1O_{1.5}$ at concentrations of 20, 30, and 40 wt%. (d) Damping factor data of hydrogel at different concentrations 20, 30, and 40 wt%.

Figure S6. (a) SEM images of the $P_1O_{1.5}$ hydrogels formed at concentrations of 20, 30, and 40 wt%, the scale is 1µm. (b) Average pore diameter of $P_1O_{1.5}$ hydrogel at concentrations of 20, 30, and 40 wt%.

Figure S7. (a) Adhesion strength of hydrogel using 20 wt% P_1O_1 at different time on glass substrate. (b) Adhesion strength of hydrogel of different ratios after 10 min, (c) Adhesion strength of different ratios and concentrations after 12 h on glass substrate. (d) Wet and dry adhesion strength of hydrogel on porcine skin.