SUPPORTING INFORMATION

$$\Phi = \frac{(\Phi_b * I_s * A_b * \lambda_{exb} * \eta_s)}{(I_b * A_s * \lambda_{exs} * \eta_b)}$$

SI 1 Fluorescence quantum yield equation. I_s and I_b are, respectively, the integrated area under the emission spectra of sample and standard; A_s and A_b are the absorbance at the excitation wavelength of sample and standard; λ ex is the excitation wavelength; η is the refractive index of the sample and standard solutions; Φ_b is the fluorescence quantum yield of the standard.

SI 2 Job's plot of fluorescence intensity vs Pb²⁺ molar fraction. Total concentration of Pb²⁺ and FS is 10⁻⁵ M, in acid acqueous solition pH4.5 in PBS 0.1M.

SI 3 Fluorescence intensity of solutions at pH 4.5 in 0.1M PBS and 5.5 μ M sensor in the presence of 2 eq of PbI2 and 15 eq of cation salts present in perovskite cells. Fluorescence intensity of solutions at pH 4.5 in 0.1M PBS and 5.5 μ M sensor in the presence of 2 equivalents of PbI₂, PbCl₂, and PbBr₂ (10% HCl).

SI 4 Fluorimetric titration (λ_{ex} = 470 nm) in PBS 0.1M at variable pH of [FS] 0.5 μ M in the absence (black line) and in the presence of 2 eq of Pb²⁺ (red line).

y = a + b * x						
	B					
Pearson's r	0.99963					
Adj. R-Square	0.99921					
Intercept	36.23407 ± 1.76745					
Slope	231.01897 ± 1.6763					

SI 5 Parameters obtained from the linear fit for the calibration line.

H ₂ O-TFA %	CH₃CN %		Time (min)	H ₂ O-TFA %	CH₃CN %
95	5	_	0	95	5
95	5		2	95	5
30	70		11	42	58
0	100		12	42	58
95	5		14	0	100
			16	0	100
			18	95	5
			21	95	5
	H₂O-TFA % 95 30 0 95	H ₂ O-TFA % CH ₃ CN % 95 5 95 30 70 0 100 95 5	H₂O-TFA % CH₃CN % 95 5 95 5 30 70 0 100 95 5	H2O-TFA % CH3CN % Time (min) 95 5 0 95 5 2 30 70 11 0 100 12 95 5 14 95 5 14 16 18 12 17 18 11	H2O-TFA % CH3CN % Time (min) H2O-TFA % 95 5 0 95 95 5 2 95 30 70 11 42 95 5 14 0 95 5 16 0 95 18 95 14 95 18 95 15

Table SI 6 gradient use for the preparative HPLC (left) and analytical HPLC (right).

¹H and ¹³C-NMR Characterization

Compound 2. ¹H-NMR (CDCl₃, 300 MHz)

Compound 3. ¹H-NMR (CDCl₃, 300 MHz)

Compound 4. ¹H-NMR (CDCl₃, 300 MHz)

Compound 5. ¹H-NMR (D₂O, 400 MHz)

ESI-MS Analysis.

Compound 5.(ESI-MS, Positive mode): mass calculated for 5 [M+Na]+ requires m/z = 957.49, found m/z = 957.58.

HPLC Characterization.

Compound 5. Retention time 8.292 min; purity 98.32%.

Peak	RetTime	Type	Width	Area	Height	Area
#	[min]		[min]	[mAU*s]	[mAU]	do
1	0.848	BB	0.0394	4.69051	1.74166	0.1597
2	7.123	VB	0.0817	25.24445	4.85179	0.8596
3	8.292	BB	0.0872	2887.42578	532.76715	98.3169
4	18.031	BV	0.1321	19.49534	1.82485	0.6638