Supporting information for

Hierarchical Cathode Constructed by Carbon Coated Na_{3.5}VMn_{0.5}Cr_{0.5}(PO₄)₃

Nanoparticles on rGO for High-Capacity and Long-Cycle-Life Sodium Storage

Jinhao Wang, Longzhu Zhao, Fengqi Lu*

Key Laboratory of New Processing Technology for Nonferrous Metal & Materials Ministry of Education, Guangxi Key Laboratory of Optical and Electronic Materials and Devices, College of Materials Science and Engineering, Guilin University of Technology, Guilin, 541004, P. R. China. *Corresponding author, E-mail: lufengqi@glut.edu.cn.

Table S1. The refinement reliability factors of XRD.

Composition	R_{wp} (%)	R _p (%)	R_{Bargg} (%)
VMC@C	1.86	1.18	0.15
VMC@C/rGO	1.87	1.27	0.20

 Table S2. Structural information of VMC@C/rGO derived from Rietveld refinement.

Atom	Site	x	У	Z	Occupancy
Na1	6b	0	0	0	1
Na2	18e	0.6221(9)	0	0.25	0.855(2)
V	12c	0	0	0.1467(1)	0.5
Mn	12c	0	0	0.1467(1)	0.25
Cr	12c	0	0	0.1467(1)	0.25
Р	18e	0.2955(7)	0	0.25	1
01	36f	0.0507(2)	0.2304(1)	0.1906(5)	1
O2	36f	0.2047(1)	0.1604(9)	0.0926(4)	1

Fig. S1. TEM image of VMC@C/rGO.

Fig. S2. TG curves of VMC@C and VMC@C/rGO.

Fig. S3. Raman spectra of VMC@C and VMC@C/rGO.

Fig. S4. The nitrogen adsorption-desorption curve and pore-size distribution of VMC@C and

VMC@C/rGO.

Fig. S5. (a) CV curves of VMC@C at 0.2 mV s⁻¹, (b) charge-discharge curve of VMC@C/rGO at 0.2 C, inset is the corresponding dQ/dV plot.

Fig. S6. GITT profiles (a) and overall trends of Na ion diffusion coefficient (b) during the sodiation/desodiation process of VMC@C and VMC@C/rGO.

Fig. S7. Real impedance versus the reciprocal square root of frequency plots to determine the Warburg coefficients (σ_{ω}).

Table S3. Comparison of the cycling stability of VMC@C/rGO electrode in this workwith recent publications on NASICON-type cathode materials.

Composite	Cycle number	retention	Ref.
Na _{3.5} VMn _{0.5} Cr _{0.5} (PO ₄) ₃ @C/rGO	8000	81%	This work
Na ₃ V ₂ (PO ₄) ₃ @C@CMK-3	1000	67.3%	54
Na ₃ V ₂ (PO ₄) ₂ O ₂ F-hs	2000	66.2%	55
rGO@Na3MnTi(PO4)3-C	3500	74.5 %	56
Na4MnV(PO4)3@C@Ga	4000	68.8 %	57
Na ₄ Fe ₃ (PO ₄) ₂ (P ₂ O ₇)/C	4400	69 %	58
$Na_{3}Fe_{0.5}V_{1.5}(PO_{4})_{3}$	5000	77.7 %	59
Ru-doped Na ₃ V ₂ O ₂ (PO ₄) ₂ F	7500	77.3 %	60

Table S4. Diffusion coefficients of Na⁺ ion calculated from CV method.

D_{Na}^{+}	VMC@C	VMC@C/rGO
01	3.85E-12	2.26E-11
R1	3.74E-12	1.69E-11

Fig. S8. Cycle performance of hard carbon at 0.2 C.