Supporting materials for MJ_1 and MJ_2

The MJ_1 molecule

Coordinates

Energy: -443898.1076954

С	-2.83740	-1.48550	0.47639
С	-4.20161	-1.26276	0.40403
С	-4.66481	-0.00892	-0.01739
С	-1.91114	-0.48257	0.13338
С	-2.39662	0.78530	-0.28738
С	-3.77895	1.00252	-0.35717
С	-0.49048	-0.75553	0.21786
Ν	0.39619	0.12068	-0.10458
С	1.76606	-0.17585	-0.08068
С	2.29622	-1.42042	-0.44540
С	3.66914	-1.65042	-0.44546
С	2.66009	0.85919	0.26441
С	4.53913	-0.62525	-0.08230
С	4.03371	0.62452	0.27027
Η	-0.20410	-1.74800	0.58608
Η	-2.45970	-2.45031	0.80090
Η	-5.73140	0.17807	-0.07786
Η	-4.12906	1.97537	-0.68047
Η	1.61858	-2.20261	-0.76804
Η	4.70983	1.42737	0.55002
Η	4.05563	-2.61770	-0.74349
Η	5.61039	-0.78897	-0.08207
0	-1.57346	1.78934	-0.61739
0	2.11996	2.06543	0.60355
Η	-0.63942	1.46943	-0.50410
Η	2.82542	2.69411	0.78924
Η	-4.90150	-2.04556	0.66922

Electronic spectra

Figure S1:orbital diagram for MJ₁

Excited State 1: Singlet-A 3.5285 eV 351.38 nm f=0.4059 <S**2>=0.000

56 -> 57 0.69133

Excited State 4: Singlet-A 4.5598 eV 271.91 nm f=0.2636 <S**2>=0.000

52 -> 57 0.22089

53 -> 57 0.52575

54 -> 57 0.33135

56 -> 57 -0.12166

56 -> 58 0.10893

56 -> 60 0.14540

 MJ_1 -Cu²⁺ complex

Coordinate

С	-2.83307	-2.34902	-0.42527
С	-4.18708	-2.10680	-0.40764
С	-1.89520	-1.34025	-0.05594
С	-4.67345	-0.82742	-0.02439
С	-2.39971	-0.05370	0.37729
С	-3.80647	0.17779	0.33457
С	-0.51240	-1.62487	-0.16697
Ν	0.46717	-0.75435	0.03216
С	1.81750	-1.03622	0.07501

С	2.42710	-2.31037	0.07468
С	3.80089	-2.40094	-0.05282
С	2.63771	0.15180	0.08365
С	4.03835	0.02550	-0.12365
С	4.60270	-1.23092	-0.16233
Н	1.82807	-3.20754	0.14524
Н	4.62792	0.92810	-0.17773
Н	4.27367	-3.37245	-0.08585
Н	5.67387	-1.33560	-0.26656
Н	-2.45778	-3.31529	-0.73879
Н	-4.88293	-2.88004	-0.70026
Н	-5.73928	-0.64346	-0.02345
Н	-4.14958	1.15780	0.62979
0	-1.61972	0.89437	0.84497
0	2.07210	1.30650	0.36264
Cu	0.14209	1.25593	0.21339
Н	-0.25098	-2.63180	-0.48702
Cl	-0.23730	3.30026	-0.67805

TDDFT-electronic spectra

406

Table S1: The transition, oscillator strength and molecular orbitals involved in the transitions for the MJ₁-CuCl comples

Band(nm)	Transition		Oscillator strength
406.28	64 -> 74	-0.18375	0.1280
	66 -> 74 HOMO-6 to LUMO	0.28768	
	67 -> 74	0.10026	
	71 -> 75	0.16339	
	73 -> 75 HOMO to LUMO +1	0.54026	
491.09	62 -> 74	-0.23022	0.0948
	63 -> 74	0.12067	
	64 -> 74	0.12860	
	65 -> 74	0.19019	
	67 -> 74 HOMO-6 to LUMO	0.43434	
	68 -> 74	-0.31312	
	69 -> 74	-0.14509	
	73 -> 74	0.19064	
542.09	67 -> 74 HOMO-6 to LUMO	0.33980	0.0478
	68 -> 74 HOMO-5 to LUMO	0.34228	
	69 -> 74	0.28524	
	70 -> 74	0.21342	
	71 -> 74	-0.16043	
	72 -> 74	0.12127	
	73 -> 75	-0.24609	
770.50	64 -> 74	-0.10467	0.0196

	$(0, 1, \pi)$	0.10.400	
	68 -> 74	-0.19428	
	69 -> 74	-0.10531	
	70 -> 74 HOMO-3 to LUMO	0.49781	
	71 -> 74 HOMO-2 to LUMO	0.22171	
	73 -> 74 HOMO to LUMO	-0.36222	
	73 <- 74	0.10931	
870.21	67 -> 74	-0.26249	0.0434
	68 -> 74	-0.18961	
	70 -> 74	0.29711	
	71 -> 74	-0.26240	
	72 -> 74 HOMO-1 to LUMO	0.32321	
	73 -> 74 HOMO to LUMO	0.35646	

Figure S2: the HOMO to LUMO +1 and HOMO-7 to LUMO transition responsible for the 406.28 nm and in the MJ₁-CuCl complex

491 band

Figure S3: the HOMO-6 to LUMO transition responsible for the 491.09 nm band in the MJ₁-CuCl complex

542 band

Figure S4: the HOMO to LUMO +1 and HOMO-7 to LUMO transition responsible for the 542.09 nm band in the MJ_1 -CuCl complex

770 band

Figure S5: the HOMO to LUMO and HOMO-3 to LUMO transition responsible for the 770.50 nm band in the MJ₁-CuCl complex

870 band

Figure S6: the HOMO to LUMO and HOMO-1 to LUMO transition responsible for the 870.21 nm band in the MJ₁-CuCl complex

MJ₂ molecule

Coordinates

С	1.74439	-0.49468	0.08767
С	2.99581	0.08183	-0.00918
С	3.12931	1.44905	-0.27088
С	0.58571	0.28662	-0.07892
С	0.71750	1.67663	-0.33949
С	1.99906	2.23539	-0.43233
С	-0.71828	-0.34179	0.02588
Ν	-1.80621	0.32462	-0.13925
С	-3.06531	-0.29057	-0.09756
С	-3.31677	-1.57887	-0.58718
С	-4.59646	-2.12514	-0.55884
С	-4.14758	0.46146	0.40504
С	-5.65236	-1.37946	-0.03958
С	-5.42669	-0.09082	0.43921
Η	1.64289	-1.55432	0.29112
Η	4.11353	1.89392	-0.34535
Н	2.08543	3.29647	-0.63183
Н	-2.50145	-2.13980	-1.02934
Η	-6.24910	0.49458	0.84003
Н	-4.76956	-3.11869	-0.95449
Η	-6.65439	-1.79141	-0.01540
0	-0.34270	2.47789	-0.49450
0	-3.87687	1.71742	0.86295
Br	4.56653	-0.99733	0.21647
Н	-0.73076	-1.41074	0.26850
Н	-4.69268	2.13937	1.15265
Η	-1.16219	1.92443	-0.38814

Electronic spectra

Figure S7: orbital diagram for MJ₂

Excited State 1: Singlet-A 3.4020 eV 364.44 nm f=0.3453 <S**2>=0.000

73 -> 74 0.69581

This state for optimization and/or second-order correction.

Total Energy, E(TD-HF/TD-KS) = -3280.81563895

Excited State 4: Singlet-A 4.5666 eV 271.50 nm f=0.2480 <S**2>=0.000

- 67 -> 74 0.13220
- 68 -> 74 0.20576

70 -> 74 0.53712

71 -> 74 0.26915

- 73 -> 75 0.18862
- 73 -> 76 -0.12106

MJ_2 -Cu²⁺ complex

Coordinate

С	-2.38765	-0.87721	-0.02392
С	-3.52844	-0.11955	0.04849
С	-1.11159	-0.28961	0.21455
С	-3.47019	1.26467	0.34656

С	-1.04592	1.11183	0.56819
С	-2.25697	1.86709	0.57579
С	0.04087	-1.10015	0.05429
Ν	1.29100	-0.67068	0.13624
С	2.42793	-1.45261	0.12332
С	2.49866	-2.86229	0.18007
С	3.71749	-3.48483	-0.01435
С	3.64037	-0.67754	0.00090
С	4.86437	-1.34774	-0.27193
С	4.89709	-2.72456	-0.25036
Н	1.60842	-3.45262	0.34610
Н	5.74935	-0.74845	-0.42291
Н	3.77616	-4.56407	-0.00386
Н	5.83371	-3.24223	-0.40477
Н	-2.44487	-1.92656	-0.27675
Н	-4.38324	1.83962	0.38498
Н	-2.17958	2.91884	0.80584
0	0.06891	1.70674	0.91875
0	3.58729	0.61720	0.22520
Cu	1.78395	1.31918	0.17557
Η	-0.13393	-2.14345	-0.20112
Cl	2.15246	3.29361	-0.86207
Br	-5.26158	-0.93344	-0.28796

Electronic spectra

Band(nm)	Transition		Oscillator
			strength
412.57	79 -> 91	0.16446	0.2054
	80 -> 91	0.10276	
	81 -> 91	-0.11555	
	84 -> 91	-0.13940	
	86 -> 92	-0.10789	
	87 -> 92	0.14396	
	88 -> 92	-0.13351	
	89 -> 92	0.17443	
	90 -> 92	0.55824	
495.59	77 -> 91	-0.20337	0.0951
	78 -> 91	0.16380	
	79 -> 91	0.10158	
	80 -> 91	0.18985	
	84 -> 91	0.42750	
	85 -> 91	-0.30711	
	86 -> 91	-0.17185	
	90 -> 91	-0.19599	
550.97	84 -> 91	0.30633	0.0397
	85 -> 91	0.18989	
	86 -> 91	0.50399	

	87 -> 91	-0.12206	
	88 -> 91	-0.13597	
	89 -> 91	0.12104	
	90 -> 92	0.21764	
770.38	79 -> 91	0.10800	0.0213
	84 -> 91	-0.10150	
	85 -> 91	0.19709	
	87 -> 91	0.51753	
	88 -> 91	-0.12108	
	90 -> 91	-0.37592	
	90 <- 91	0.11419	
873.71	84 -> 91	-0.26061	0.0576
	85 -> 91	-0.19650	
	87 -> 91	-0.19734	
	88 -> 91	-0.29027	
	89 -> 91	0.41019	
	90 -> 91	-0.30961	

Figure S8: the HOMO to LUMO transition responsible for the 412.57 nm band in the MJ_2 -CuCl complex

Figure S9: the HOMO-6 to LUMO transition responsible for the 495.59 nm band in the MJ₂-CuCl complex

Figure S10: the HOMO-6 and HOMO-4 to LUMO transition responsible for the 770.38 nm band in the MJ_2 -CuCl complex

Figure S11: the HOMO and HOMO-3 to LUMO transition responsible for the 550.97 nm band in the MJ_2 -CuCl complex

Figure S12: the HOMO-2 and HOMO-6 to LUMO transition responsible for the 873.71 nm band in the MJ_2 -CuCl complex

Reactivity descriptors

Global reactivity descriptors like chemical hardness (η), electronic chemical potential (μ), electronegativity (χ), global softness (S) and electrophilicity index (ω), were also considered and calculated at the PBE1PBE/6-311g(d,p) level of theory. The chemical potential, μ , and chemical hardness, η , are defined as the first derivative of the electronic energy and chemical potential

with respect to the electron number (N) at constant external potential, v(r), respectively as given in equations 1 and 2

$$\mu \frac{1}{2} \left[\frac{\partial E}{\partial N} \right]_{v} \tag{1}$$

$$\eta = \frac{1}{2} \left[\frac{\partial \mu}{\partial N} \right]_{\nu} = \frac{1}{2} \left[\frac{\partial^2 E}{\partial N^2} \right]_{\nu} \tag{2}$$

The chemical potential, μ characterizes the escaping tendency of electrons from the equilibrium system and the molecular hardness determines the resistance to charge transfer. Within the framework of finite differences approximation, the above descriptors and other global descriptors can also be calculated as follows ^{1–4}

$I = -E_{HOMO}$	(3)
$A = -E_{LUMO}$	(4)
$\eta = -\frac{E_{HOMO} - E_{LUMO}}{2}$	(5)
$\mu = \frac{E_{HOMO} + E_{LUMO}}{2}$	(6)
$\omega = \frac{\mu^2}{2\eta}$	(7)
$\chi = -\mu = -\frac{E_{HOMO} + E_{LUMO}}{2}$	(8)
$S = 1/2\eta$	(9)
$\omega^- = \frac{(\mu^-)^2}{2\eta}$	
$\omega^+ = \frac{(\mu^+)^2}{2\eta}$	

References

- 1. R. G. Pearson, Proc. Natl. Acad. Sci., 1986, 83, 8440-8441.
- 2. R. G. Pearson, J. Chem. Educ., 1987, 64, 561.
- 3. J. L. Reed, J. Phys. Chem. A., 1997, 101, 7396-7400.
- 4. R. G. Parr, L. V. Szentpály and S. Liu, J. Am. Chem. Soc., 1999, 121, 1922-1924.