Electronic Supplementary Material (ESI) for Materials Advances. This journal is © The Royal Society of Chemistry 2023

Supplementary Information

Sn²⁺ doping-induced large extra vibrational energy of excited state for

efficient blue emission in Cs₂SnCl₆: Bi

Shaofan Fang,^{‡*ab} Jinbo Huang,^{‡a} Huixia Li,^b Jingheng Nie,^a Zexiang Liu,^a Feier Fang,^a Haizhe

Zhong,*a

^aInstitute of Microscale Optoelectronics, Shenzhen University, Shenzhen 518060, P. R. China

^bShandong Laboratory of Yantai Advanced Materials and Green Manufacturing, Yantai 264003, P.

R. China

[‡]These authors contributed equally.

*Corresponding author. E-mail address: haizhe.zhong@szu.edu.cn; sffang@amgm.ac.cn

Figure S1. The XRD Rietveld refinement of Sn^{2+} : 0.08% Bi and Sn^{4+} : 0.04% Bi.

Figure S2. PL spectra for PLQY of Cs₂SnCl₆: Bi at room temperature.

Figure S3. PL spectra of the Cs_2SnCl_6 : Bi samples synthesized by $SnCl_2$ or $SnCl_4$ precursor.

Figure S4. (a) PLQY and (b) PL spectra of the samples synthesized by different ratio of Sn^{2+} and Sn^{4+} in precursor solutions.

Figure S5. Full-scan XPS spectra of Sn⁴⁺: Bi@H₃PO₂ and Sn⁴⁺: Bi.

Figure S6. PL intensity of Sn^{4+} : Bi and Sn^{4+} : Bi@H₃PO₂ at different temperatures under UV light.

Figure S7. Integrated PL intensity as a function of temperature of (a) $Sn^{2+}: 0.08\%$ Bi and (b) $Sn^{4+}: 0.04\%$ Bi.