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MATERIALS AND METHODS

LiBH, (purity>95% from Aladdin) was used as received without further purification, and Li;PO4 (purity>>99%
from Aladdin) was dried under dynamic vacuum at 300 °C for 5h prior to use. xLiBH4-Li;PO, mixtures were
prepared with five different kinds of mixed mass, ratios ranging from x=40, 50, 70, 80 to 90. For each experiment, 1g
of the mixture was loaded into a custom-designed milling jar in a glove box filled with argon. The ball-to-sample
weight ratio was kept at 40:1. Two mixtures with compositions of LiBH4 and LiPO, were mechanically milled at 400
rpm for 2H with a planetary ball mill (QM-1SP4, Nanjing). All samples prepared were milled for four periods of 30
min each separately. Breaks of 5 min have been used between each period in order to overcome heating effects. All
samples were mechano-chemically treated within argon atmosphere. After milling treatment, the mixtures were
collected in an Argon-filled glove-box for further structural and property characterizations. All manipulations of the
samples during the experiment were conducted within an Argon atmosphere in a glove box (p(O;) < 0.1 ppm, p(H,0)

<0.1 ppm) .

CHARACTERIZATION

X-ray diffraction (XRD) analysis was performed on a MiniFlex 600 XRD unit (Rigaku, Japan) by using Cu Ka

radiation (4 = 0.154056 nm) at 40 kV and 15 mA. The 26 angle was from 10° to 90° with a 0.02° increment. The
samples were placed in homemade dies and sealed with polyimide thin-film tape, which ensured that the powder

samples were within an Argon atmosphere during the process of measurement. Micro-structure and morphology were
characterized by using scanning electron microscope (SEM) Zeiss Sigma 300 operating at 3 kV and
Transmission Electron Microscope (TEM) FEI Talos F200X operating at 200 kV, coupled with Energy Dispersive

Spectroscopy (EDS). X-ray photoelectron spectroscopy (XPS) analyses were conducted on a Thermo Fisher
Scientific Spectrometer with the Al Ko X-ray source. The powder sample was inside an argon-filled glove box and

then mounted on a sample holder which was transferred by using a special container from the glove-box to the XPS
facility to avoid air exposure. Argon-ion sputtering was used for in-depth profile analysis. Differential scanning
calorimeter (DSC) was conducted on a Netzsch DSC 200 F3 unit. Approximately 3 mg of sample was heated in an

Al O3 crucible at temperatures ranging from room temperature to 300 °C at 2 °C min!. For the LiBH,/Li;PO,



composites, Specific surface areas and pore volumes of the samples were characterized on Micro-metrics ASAP2020
by using the Brunauer—-Emmett-Teller (BET) methods.

Electro-chemical measurement: The ionic conductivity of pure LiBH,, LiBH,/Li;PO, was measured,respectively,

by electro-chemical impedance spectroscopy (EIS), which was conducted by using a Solartron impedance analyzer.
These composite powders were pressed into pellets with the diameter of 14 mm and thickness of 0.7-0.9 mm
approximately under the pressure of 10 MPa, using a homemade battery mold. The symmetric battery consisting of
SUS| LiBH4-Li;PO,4 |[SUS (SUS: stainless steel) were used to evaluate their EIS spectra , the frequency of which
varied from 0.1Hz to 1 MHz. All measurements were carried out within the temperature range from 35 °C to 125 °C
at an interval of 20 °C. Each temperature point was required for a holding time of 60 minutes in order to ensure date
reproducibility of the measurement. Direct Current polarization was conducted by applying a constant voltage of 10
mV for 1500 s. The Cyclic Volta-metery (CV) and the critical current density were obtained by using Li SUS
batteries and Lithium symmetrical batteries respectively with an electrolyte with a diameter of 14 mm and a thickness
of approximately 1 mm. The electro-chemical window was examined by performing CV on SUS|SSEJLi cells from
0.5 to 5 V at 105°C when the scan rate was 5 mV s-!. The galvanostatic plating-stripping cycling was tested on
Li|SSE|Li symmetric cells by using Neware battery test systems (CT-3008 W-5V20A-S4, Shenzhen, China).

The temperature-dependent lithium ionic conductivity of the LiBH4/Li;PO4 composites was measured by using
electro-chemical impedance spectroscopy (EIS), which was performed on electrolytes to yield a Nyquist plot. As
shown in Fig. 3a, S2, ESI{, each Nyquist plot is composed of a semicircle in the high frequency region and a line

tailing in the low frequency region. The electrolyte conductivities ¢ can be evaluated by the following equation:

_ d
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where d denotes the thickness of the pressed pellet of electrolytes, S denotes the cross-sectional area of the pellet, and
R denotes the pellet resistance, which corresponds to the intersection of the semicircle with the Z' axis in the low-
frequency limit of the Nyquist plot (Arrhenius diagram of ionic conductivity of LiBH4, Li;PO,, different mixing

ratios LiBH4/Li;PO4 composites are shown in Fig. S3, ESIT).
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Fig. S1. In-situ DSC curves of 50 wt% LiBH./Li;PO, composite by heating/cooling for (a) 2h.
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Fig. §2. (a-f) EIS of LiBH4/L1;PO,4 composite solid electrolytes with different mass fractions.
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Fig. §3. Arrhenius diagram of ionic conductivity of (a)Pure LiBH,4, Li;PO,4 and50wt% LiBH4/Li;PO,

composite solid electrolyte and (b) LiBH4/Li;PO, composite solid electrolyte with different mass

fractions.

n

sl .

10 __f_..j .
e @
- 44
o - g
: - g
E P o ,:_1
@ ,\:/",- T=35°C 3@
= 4 5”
107 ‘s ¢
5] ‘- 1§
= Y4 le]
= . S
= [ —_
3 s 11 E,
4 e,
- -
‘s == 50 wi% LiBIL/Li,PO, (2h) ~

10 ’ —@- S0wt% LBH/LLPO, (S0n) | ()
—@— Pure LiBII,
L ! L
0 2 50
Milling time (h)

Fig. $4. The functional relationship between specific surface area, ionic conductivity ratio and ball

milling time at 35°C.




