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S1 Pump system 
As pictured in Fig. S1, the pump system is designed to simultaneously use the three pumps from the left or the two outer pumps. This 
enables mixing of precursor solutions as well as switching between deposition of precursor and nanoparticle solutions. The major 
part of the structural components are produced by rapid prototyping techniques, as depicted in the exploded 3D model in Fig. S2. 
The realized setup is shown in Fig. S3 with the pumps and the magnetic valves (not visible) mounted on a wooden plate and the 
electronic parts in the junction box next to it. The graphical user interface (GUI), as depicted in Fig. S4, consist of control boxes for 
each of the four pumps in the top part, the schematic diagram in the bottom left, which shows the state of the pumps and valves, 
and the menu in the bottom right, where experiments can be configured, saved, and started. A schematic of the electronics is 
available as separate image in the ESI (https://doi.org/10.1039/d3ma00136a, Electronics schematic) to facilitate the rebuild of the 
system. The 3D model of the pump and the GUI will be provided upon genuine request to the corresponding author. 

  
Fig. S1 Schematic diagram of the pump system showing 4 pumps, 5 vessels, 11 magnetic 
valves and the USP tool. 

Fig. S2 Exploded 3D model of the pump design, showing the 3D printed structural parts 
in white. 

  
Fig. S3 Photograph of the realized USP pump system. Fig. S4 GUI for the USP pump system. 
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S2 Combinatorial transmission measurements 
Due to the confined available space and the lack of a commercially available solution, a proprietary sample stage for the FTS 
instrument is designed and built (Fig. S5). It consists of two piezo-motor-driven linear axes which move the sample in horizontal and 
vertical directions, and 3D-printed structural components. A control software is developed to move the sample stage and perform 
measurements automatically. The easy-to-use GUI is shown in Fig. S6, exemplarily configured for 15 UV transmission measurements. 
Since the data is stored in a ready-to-use format, it can be directly loaded into the evaluation script (Python Jupyter Notebook) which 
includes widgets for interactive examination of the analysis results, e.g. Fig. S7. The 3D model of the sample holder will be provided 
upon genuine request to the corresponding author. 

 
Fig. S5 3D model of the FTIR sample stage (left) and the realized system (right). 

  
Fig. S6 GUI for the (semi-)automatized FTS measurements. Fig. S7 Interactive Tauc plot from transmission measurements of a combinatorial 

deposit. 

 
  



S3 Combinatorial X-ray diffraction 
A similar approach to the FTS setup is followed for upgrading the XRD instrument. This time, the stage consists of a rotation axis 
instead of a second linear axis which is necessary to reach the entire sample space. Additionally, a brass tube is added for confining 
the X-ray beam in a small, circular shape (Fig. S8). The FTS control software and GUI is mostly repurposed but is reconfigured to work 
with the rotation axis and the XRD measurement software. The data evaluation is also based on Python Jupyter Notebooks enabling 
interactive exploration of the measurements and comparison with reference diffraction pattern. The 3D model of the sample holder 
will be provided upon genuine request to the corresponding author. 

 
Fig. S8 3D model of the XRD sample stage (left) and the realized system (right). 

S4 Stability of band gap 
The band gap of the same combinatorial film is evaluated a second time after leaving it under ambient conditions for over 5 months 
(11.11.2022–18.04.2023). Exactly the same procedure as described in text (Results and discussion, Optical properties) is used which 
yields maps of direct and indirect band gap values (Fig. S9). These are used to calculate the relative deviations from the same pixels 
of the previously obtained data like the calculation of the compositional reproducibility in the main text (Results and discussion, 
Composition). This leads to average errors for the direct and indirect band gap of 1.43 % and 1.82 %, respectively (Fig. S10). Since the 
errors are comparable to the general band gap reproducibility (S28), the films can be considered stable with respect to the evaluated 
band gap energies. 

  
Fig. S9 Maps of direct and indirect band gaps evaluated using the Tauc method of a 
combinatorial film which was kept under ambient conditions for over 5 months The 
values of the colour bars are the minimum, the mean, and the maximum band gap 
energy. 

Fig. S10 Maps of relative deviation of the direct and indirect band gap before and after it 
was kept under ambient conditions for over 5 months. The values of the colour bar are 
the minimum, the mean, and the maximum relative deviation. 



 

S5 SDD model for NIST DTSA-II 
Since the employed Monte Carlo simulation software, NIST DTSA-II,1,2 relies heavily on an accurate definition of the detector model, 
the parameters in Table S1 are carefully collected from the meta data of measurement files and online resources.3,4 

Table S1 SDD model parameters for NIST DTSA-II. 

Window Elevation angle Azimuthal angle Optimal working distance 
Amptek C2 Si3N4 35.0 ° 0.0 ° 8.5 mm 

Sample-to-detector distance Detector area Gold layer Aluminium layer 
30.0 mm 30.0 mm2 0.0 nm 10.0 nm 

Nickel layer Dead layer Thickness Number of channels 
0.0 nm 0.03 µm 1.0 mm 4096 

Zero strobe discriminator Energy scale Zero offset Resolution 
0.0 eV 10.0 eV/channel 0.0 eV 127.5 eV FWHM at Mn K 

S6 Soda-lime glass properties 
The specific gravity of 2.479 and the chemical composition in Table S2 are taken from 5. 

Table S2 Chemical composition of Thermo Scientific extra-white glass in wt%. The components in red are not used for the Monte Carlo simulations. 

SiO2 MgO Na2O Al2O3 K2O Fe2O3 CaO SO3 
72.20 4.30 14.30 1.20 1.20 0.03 6.40 0.30 

 

S7 eZAF correction factors 
The heavy elements Cu, Ga, and Fe are, as expected, much less affected by absorption losses than the lighter elements (Table S3). 
Hence, the quantification should yield acceptable results after normalization, especially because A is almost equal for the three 
elements.  

Table S3 Correction factors of the standardless eZAF quantification of the as-deposited film averaged over all 225 pixels plus/minus the standard deviation. Z, A, and F are the atomic 
number, absorption, and fluorescence effects, respectively. 

Element Z A F 
O 0.858 ± 0.003 0.190 ± 0.006 1.000 ± 0.000 

Na 0.875 ± 0.003 0.180 ± 0.014 1.003 ± 0.000 
Mg 0.880 ± 0.003 0.195 ± 0.006 1.003 ± 0.000 
Al 0.885 ± 0.003 0.284 ± 0.011 1.005 ± 0.001 
Si 0.889 ± 0.002 0.398 ± 0.012 1.005 ± 0.000 
K 0.911 ± 0.002 0.813 ± 0.003 1.037 ± 0.002 

Ca 0.914 ± 0.002 0.855 ± 0.003 1.046 ± 0.003 
Fe 0.937 ± 0.002 0.967 ± 0.001 1.148 ± 0.020 
Cu 0.949 ± 0.001 0.971 ± 0.003 1.157 ± 0.035 
Ga 0.957 ± 0.001 0.969 ± 0.004 1.069 ± 0.002 

 
 
 
 
 
 
 
 



S8 ZAF Quantification of Monte Carlo simulations 
The Monte Carlo (MC) simulation spectra for the thickness estimation of the as-deposited film are quantified using the built-in ZAF 
quantification algorithm of NIST DTSA-II “ZAF-style”. To this end, standard spectra of pure elements are obtained from MC 
simulations, employing the same SDD model. The results are normalized to Cu, Ga, and Fe as described in the main text (Results and 
discussion, Composition) and the minimum, mean, and maximum values are plotted against the thickness of the simulated film in Fig. 
S11. As indicated with the red dashed line at 600 nm, the molar fractions 𝑥 of the investigated films are within 10 % of the “bulk” 
molar fraction at 1500 nm 𝑥ଵହ଴଴. It must be pointed out that the “ZAF-style” algorithm is very basic and the accuracy of the APEX™ 
eZAF algorithm is expected to be better. 

 
Fig. S11 Minimum, mean, and maximum molar fractions relative to the molar fraction at 1500 nm film thickness of MC simulated spectra. The NIST DTSA-II “ZAF-style” algorithm was 
employed for the quantification. 

 
  



S9 Simulation of concentration maps 
The combinatorial deposition experiment as described in the main text (Experimental, Sample preparation) is simulated using a basic 
Python script which does not take into account any forces acting on the droplets (as in 6, e.g.), the sticking coefficients of the 
pyrolyzed precursor solutions, or the extent of the spray cone. It simply calculates pixel for pixel the current composition of the 
precursor solution. The following code is annotated with brief descriptions of what it does. The first part results in the vertical and 
horizontal gradients as depicted in Fig. S12, which represent the fraction of the gradient in % for each mm2. Afterwards, the 
elemental concentrations are incorporated and the arrays are combined. This leads to the normalized concentration maps in Fig. S13 
which feature the same non-uniform vertical and horizontal gradients of Ga and Fe, respectively, as described in the main text 
(Results and discussion, Composition). In comparison to the realized experiment, the effect is much less pronounced and the 
concentration spread is much higher. However, this most probably is related to the neglected effects mentioned above. 
 

import numpy as np 
 
## generate vertical and horizontal gradients as numpy arrays 
 
# conversion factor between arb. length unit of USP tool to mm (200 = 1 mm) 
cf = 200 
 
# the size of the sprayed area is 22000 in x-direction and 19000 in y-direction, i.e. 110x95 mm 
vx = 22000 / cf 
hy = 19000 / cf 
 
# this corresponds to 25 horizontal lines for the vertical gradient 
# and 27 vertical lines for the horizontal gradient 
vdy = 760 / cf 
vny = 25 
hdx = 815 / cf 
hnx = 27 
 
# the numpy arrays are initialized with the correct shape and filled with 1 
vertical = np.ones((int(vdy * vny), int(vx))) 
horizontal = np.ones((int(hdx * hnx), int(hy))) 
 
# concentrations of the vertical and horizontal lines in % are computed 
vlines = np.vstack( 
    [np.linspace(100 - i * 100/vny, 100 - (i+1) * 100/vny, vertical.shape[1]) for i in range(vny)] 
) 
hlines = np.vstack( 
    [np.linspace(100 - i * 100/hnx, 100 - (i+1) * 100/hnx, horizontal.shape[1]) for i in range(hnx) 
]) 
 
# the lines are mapped onto the arrays 
# since the spray nozzle goes back and forth, every second gradient line is flipped 
for i in range(vny): 
    vgradient = vlines[i] 
    if i%2: 
        vgradient = np.flip(vgradient) 
    vertical[int(i*vdy):int((i+1)*vdy)] = vertical[int(i*vdy):int((i+1)*vdy)] * vgradient 
for i in range(hnx): 
    hgradient = hlines[i] 
    if not i%2: 
        hgradient = np.flip(hgradient) 
    horizontal[int(i*hdx):int((i+1)*hdx)] = horizontal[int(i*hdx):int((i+1)*hdx)] * hgradient 
 
# the horizontal gradient is rotated 
horizontal = np.rot90(horizontal, 1) 

 



## incorporate elemental information 
 
# precursor solution concentrations in mmol/l 
cu = 25 
ga = 40 
fe = 30 
 
# cu is sprayed twice, vertically and horizontally 
# ga and fe gradients are subtracted from 100% because they go in the reverse direction 
# the gradients are multiplied by the number of spray cycles but this factor will cancel out 
cu_gradient = 20 * (vertical + horizontal) * cu 
ga_gradient = 20 * (100 - vertical) * ga 
fe_gradient = 20 * (100 - horizontal) * fe 
 
# the gradients are stacked and normalized 
stacked_gradients = np.stack([cu_gradient, ga_gradient, fe_gradient]) 
normalized_gradients = stacked_gradients / stacked_gradients.sum(axis=0) 
 
# the arrays are cropped to the center of the sprayed area to reflect the size of the 3x3 substrates 
# i.e. 75x75 mm 
cropped_gradients = stacked_gradients[:,10:-10,18:-17] 
normalized_cropped_gradients = cropped_gradients / cropped_gradients.sum(axis=0) 

 

  
Fig. S12 Calculated gradients of 25 vertical and 27 horizontal lines on a 110x95 mm area. Fig. S13 Normalized concentration maps of the simulated combinatorial spray 

deposition. The values of the colour bar are the minimum, the mean, and the maximum 
mole fraction. 

 

S10 Compositional spread of data 
Fig. S13 and Fig. S14 depict the data points in binary plots and a ternary diagram, respectively. 

  
Fig. S14 Binary composition plots. Fig. S15 Ternary composition diagram. 

 
  



S11 Reproducibility of the combinatorial deposition 
An additional combinatorial film is deposited and analysed by EDS measurements as described in the main text (Results and 
discussion, Composition). This results in the composition maps of Fig. S16 which feature three vertical lines of missing data. 
Chronologically, this film was deposited earlier than the data that is shown in the main text and was later used for the heat 
treatment. The EDS measurement routine was not ideal yet and did not exactly move to the correct positions. Part of the 
reproducibility error can be attributed to these positional errors. However, the data was mainly removed because the measurement 
area partially overlapped with conductive copper tape which was not used in later measurements. Still, the remaining pixels should 
be comparable and are used to calculate the relative deviations as described in the main text, yielding Fig. S17. 

S12 Change of composition through heat treatment 
The Cu, Ga, and Fe concentration maps of one combinatorial film before and after the annealing heat treatment are compared in the 
same way as in S12. This results in the maps of relative deviations in Fig. S18. 

S13 Oxygen maps 
Fig. S19 depicts the non-normalized oxygen concentration maps of the films A and B before and after annealing. The trend of an 
increasing concentration from top-left to bottom-right is unchanged through the heat treatment. It seems like the annealing would 
introduce more noise to the data, but this can be attributed to a reduced spread of the values (4.8 vs. 8.2/11.0 at%). The 
reproducibility of the oxygen concentration (3.2 %) is similar to the reproducibility of Cu, Ga, and Fe (S11). 

  
Fig. S16 Normalized mole fraction maps of the elemental gradients obtained by EDS 
measurements with standardless quantification of an additional combinatorial film. The 
white vertical lines are missing data which originate from imperfect measurement 
conditions (see text). The values of the colour bar are the minimum, the mean, and the 
maximum mole fraction. 

Fig. S17 Maps of relative deviation of the Cu, Ga, and Fe concentration maps of two 
equally prepared combinatorial films. The white vertical lines are missing data which 
originate from imperfect measurement conditions (see text). The values of the colour 
bar are the minimum, the mean, and the maximum relative deviation. 

  
Fig. S18 Maps of relative deviation of the Cu, Ga, and Fe concentration maps of one 
combinatorial film before and after the annealing heat treatment. The white vertical 
lines are missing data which originate from imperfect measurement conditions (see 
text). The values of the colour bar are the minimum, the mean, and the maximum 
relative deviation. 

Fig. S19 Non-normalized oxygen mole fraction maps of two equally prepared films (A 
and B), twice as-deposited and once after the annealing heat treatment. The white 
vertical lines in “as-deposited B” are missing data which originate from imperfect 
measurement conditions (see text). The values of the colour bars are the minimum, the 
mean, and the maximum mole fraction. 

 
  



S14 Evaluation of sigma for the Gaussian filter 
The XRD measurements are smoothened by applying a Gaussian filter which requires the parameter sigma as standard deviation for 
the Gaussian kernel. To this end, an arbitrary measurement with a prominent peak at 36° is selected and the contribution of the 
substrate is removed, as described in the main text (Results and discussion, Crystal structure). Then, the measurement is max-
normalized and plotted together with a gaussian function which has an amplitude of 1.0: 
 

# define the Gaussian function 
# x0...location of the peak maximum 
# A...amplitude of the peak 
# sigma...standard deviation of the Gaussian distribution 
def gauss(x, x0, A=1.0, sigma): 
    return A * np.exp(-(x - x0) ** 2 / (2 * sigma ** 2)) 

 
The location of the peak maximum and the standard deviation are graphically adjusted to fit the data (Fig. S20). The obtained sigma 
should be a good approximation for the average peak width and can be used to smoothen the data in order to facilitate the further 
analysis. 

 
Fig. S20 Graphical evaluation of the peak width for the Gaussian filter. 

 
  



S15 Composition dependence of the 36° peak prominence (as-deposited film) 
The prominence of the peak at 36° is obtained by subtracting the mean of the XRD measurements from the height of the peak. 
Beforehand, the data is minmax-normalized in order to obtain comparable results. After resizing the composition maps to a size of 
12x12 pixels (0), each peak prominence is plotted against the Cu, Ga, and Fe concentration of the respective pixel. The invalid 
measurements in the corners of each substrate are omitted. Fig. S21 depicts the results of the evaluation which features two lines, 
one solid and one dashed which are obtained from linear and quadratic regression, respectively. 

S16 Composition dependence of the 36° peak prominence (annealed film) 
The measurements of the annealed film are treated the same as in S15 which results in Fig. S22. 

  
Fig. S21 Composition dependence of the 36° peak prominence from minmax-normalized 
XRD measurements of the as-deposited film. One solid and one dashed line is displayed, 
representing the linear and quadratic regression, respectively. The slope of the linear 
regression is shown in the bottom right. 

Fig. S22 Composition dependence of the 36° peak prominence from minmax-normalized 
XRD measurements of the annealed film. One solid and one dashed line is displayed, 
representing the linear and quadratic regression, respectively. The slope of the linear 
regression is shown in the bottom right. 

 

S17 Fit results of the crystal structure evaluation 
Fig. S23 depicts some meta data results from the XRD curve fitting as described in the main text (Results and discussion, Crystal 
structure). The root mean squared error (RMSE) is formed between the model curve ∑ 𝐹ௌீ

௙௜௧(𝜃) and the measurements 𝐹௠௘௔௦(𝜃) by 
calculating 

 𝑅𝑀𝑆𝐸 = ඨ∑൬∑ ிೄಸ
೑೔೟

(ఏ)ିி೘೐ೌೞ(ఏ)൰
మ

ே
 

where the outer sum is over all 𝜃 angles and 𝑁 is the number of data points. The maximum of the fit curve can be below 100 % if the 
measured reflection at 36° is at a different angle than the delafossite maximum, assuming that the excess intensity does not 
originate from texture. A maximum above 100 % indicates texture of the spinel structure because the heights of the reflections at 30° 
and 57° do not fit the reference pattern; other crystal structures which diffract at these angles are also possible. The background 
factor is the height of the max-normalized measurement at the position of the background maximum, i.e., calculated like this: 
 

bg_maxpos = background.argmax() # numpy argmax finds the index of the maximum of an iterable 
bg_factor = max_normalization(measurement)[bg_maxpos-10:bg_maxpos+10].mean() # averaging +/-10 data points 

  



S18 Up-/downsampling a property map 
In order to change the resolution of a property map, the initial matrix is inflated by repeating each pixel several times such that the 
number of pixels in both axes (i.e., width and height) is the least common denominator (LCD) between the initial and the target 
widths/heights. The LCD is divided by the target width/height to obtain the size of the pixel window from which the mean gives the 
value of the corresponding pixel in the target resolution. E.g., in order to reduce from 5×5 pixels to 4×4 pixels, the matrix is inflated 
to 20×20 pixels. Then, the window size is found to be 20/4×20/4 = 5×5 pixels and the mean of all 16 windows is formed (Fig. S24). 
The same procedure is followed to upsample a property map in S20. 

  
Fig. S23 From left to right: root mean squared error between XRD fit and measurement, 
maximum of the XRD fit (optimum: 100 %), and factor of the removed background for 
the data pre-processing. The values of the colour bars are the minimum, the mean, and 
the maximum percentage. 

Fig. S24 Example of downsampling the resolution of a property map from 5×5 pixels to 
4×4 pixels. The mean of the small squares inside each red dashed square in the left 
image is the value of the corresponding pixel in the right image. 

 

S19 Composition from crystal structures 
The model which correlates the measured EDS composition maps of the combinatorial film with the crystal structures, as presented 
in the main text (Results and discussion, Crystal structure), is used to obtain the deduced model composition maps in Fig. S25. If 
delafossite is not considered in the crystal structure evaluation, the resulting composition maps change slightly (Fig. S26) but the 
composition maps which are based on the intensities from the exhaustive search still agree best with the experimental results. 
 

  

  

Fig. S25 Composition maps deduced from the initial crystal structures where all compounds are considered using different approaches: (a) only spinel structure with Cu and Ga mole 
fractions limited to 1/3 and 2/3, respectively, (b) based on normalized intensities, (c) based on absolute intensities, and (d) after optimizing the intensities with the exhaustive 
search. The values of the colour bars are the minimum, the mean, and the maximum mole fraction. 

 
  



 

  

  

Fig. S26 Composition maps deduced from the crystal structures without considering delafossite using different approaches: (a) only spinel structure with Cu and Ga mole fractions 
limited to 1/3 and 2/3, respectively, (b) based on normalized intensities, (c) based on absolute intensities, and (d) after optimizing the intensities with the exhaustive search. The 
values of the colour bars are the minimum, the mean, and the maximum mole fraction. 

 

S20 Filling and upsampling a property map 
As exemplarily depicted in Fig. S27, the missing values of the structure maps are filled by the mean values of the surrounding 
neighbours iteratively. Since the initially empty positions become new neighbours for other positions after the first iteration, a new 
mean must be formed several times until the values do not change anymore. Afterwards, the resolution is increased from 
12×12 pixels to 15×15 pixels as described in S200. 
 

 
Fig. S27 Procedure of transforming the structure maps from 12×12 pixels with missing positions to complete 15×15 pixels. The image shows a subsection of a data map and uses dummy 
values for explanatory reasons. 

 
  



S21 Density from composition and crystal structures 
Four methods of computing the density from the composition and crystal structure maps are compared: 
 

def compute_density_mean(xis, xims, rhos): 
    rhos = np.array(rhos) 
    return rhos.mean() 
 
def compute_density_mean_deviation(xis, xims, rhos): 
    xis = np.array(xis) 
    xims = np.array(xims) 
    rhos = np.array(rhos) 
    return (rhos.mean() - (rhos.mean() - rhos) * (xims * xis).sum(1)).mean() 
 
def compute_density_linalg(xis, xims, rhos): 
    xis = np.array(xis) 
    xims = np.array(xims).T 
    rhos = np.array(rhos) 
    a = np.vstack([xims, np.ones(xims.shape[1])]) 
    b = np.hstack([xis, 1]) 
    linsol = np.linalg.lstsq(a, b, rcond=None)[0] 
    return np.sum(rhos * linsol) 
 
def compute_density_linprog(xis, xims, rhos): 
    xims = np.array(xims).T 
    xis = np.array(xis) 
    rhos = np.array(rhos) 
    G = -np.eye(xims.shape[1]) 
    h = np.zeros(xims.shape[1]) 
    A = np.ones(xims.shape[1]) 
    b = np.ones(1) 
    sol = qpsolvers.solve_ls(R=xims, s=xis, G=G, h=h, A=A, b=b, solver='cvxopt') 
    return (sol * rhos).sum() 

 
xims and rhos are lists of the compositions and the densities of the considered compounds, respectively. Around 16,000 
combinations of the compounds are generated, each described by the overall composition xis, the crystal structure amounts, and 
the true densities. The densities are evaluated as described in the main text (Results and discussion, Thickness) and plotted against 
the true values in Fig. S28. “Mean Deviation” lowers the root mean squared error (RMSE) and the maximum error (MAXE) slightly in 
comparison to the trivial “Mean” solution. But the deployed “Linprog” yields a far better agreement between true and predicted 
densities. Without the constraints, the method does not work, as implemented in “Linalg”. 

 
Fig. S28 Predicted versus true densities of 16,000 composition-structure pairs using four different evaluation functions. 

 
  



S22 RMSE maps of thickness estimation 
The root mean squared error (RMSE) between the measured and Monte Carlo (MC) simulated spectra is calculated with 

 𝑅𝑀𝑆𝐸 = ට∑൫ூ೘೐ೌೞ(ா)ିூಾ಴(ா)൯
మ

ே
 

where 𝐼 is the intensity of the spectra, 𝐸 is the energy channel, and 𝑁 is the total number of channels. This calculation yields the 
RMSE maps in Fig. S29 which all are similar on average and below 2 %. 

 
Fig. S29 RMSE maps of the as-deposited and annealed films, calculated based on the structure maps (a) with and (b) without considering delafossite in the evaluation. The values of the 
colour bars are the minimum, the mean, and the maximum RMSE. 

 

S23 Simulation of thickness distribution 
The data from S9 is used to calculate the thickness simply based on the total molar amount: 
 

molar_total = stacked_gradients.sum(axis=0)[10:-10,18:-17] 
# minmax-normalize the data 
molar_total_norm = minmax_normalization(molar_total) 
# apply the distribution of the experimental thickness  
thickness = molar_total_norm * (700 - 400) + 400 

 
This yields the distribution in Fig. S30 which is monotonically increasing from approx. top left to bottom right. This indicates that 
further factors – mainly the ones that are mentioned in S9 – influence the thickness, especially in the center of the combinatorial 
area. 

S24 Thickness from profilometer measurements 
The same combinatorial Cu-Ga-Fe film as before is deposited on another batch of 3×3 glass substrates which are partially covered 
with a steel mask during the deposition. This yields 9 samples which each are probed using a tactile profilometer on 9 positions for 3 
times as depicted in Fig. S31. The mean and the standard deviation of the three measurements are formed which yield the thickness 
map in Fig. S32. The average thickness and the distribution coincide well with the results from the EDS thickness evaluation in the 
main text (Results and discussion, Thickness). Only the data range is much higher, but this can be attributed to the high variance of 
the profilometer measurements. The standard deviation of the three measurements on each of the 9×9 pixels is in an interval of [10, 
463] nm and 135 nm on average. 



   
Fig. S30 Simulated thickness distribution based on the 
data from S9. The values of the colour bars are the 
minimum, the mean, and the maximum thickness. 

Fig. S31 Photograph of one glass substrate with one 
section of the combinatorial Cu-Ga-Fe film on it. The 
sample is partially covered with a steel mask during the 
deposition, leaving a grid of uncovered glass. 
Profilometer measurements are conducted on the 
marked positions. 

Fig. S32 Thickness distribution from profilometer 
measurements. The values of the colour bars are the 
minimum, the mean, and the maximum thickness. 

 

S25 Merging of UV and VIS spectra 
The UV and VIS spectra are merged by forming a weighted mean using a sigmoid function in an interval of [-5, 5] where the two 
spectral regions overlap: 
 

import numpy as np 
 
def sigmoid(x): 
    return 1 / (1 + np.exp(-x)) 
 
# uv and vis are numpy arrays with a shape [2, N], where N is the number of data points 
# the wavelength is in the first row 
def merge_spectra(uv, vis): 
    overlap = np.intersect2d(uv[0], vis[0]) 
    gradient = sigmoid(np.linspace(-5, 5, len(overlap))) 
    return np.hstack([ 
        uv[:,:-len(overlap)], 
        np.vstack([ 
            overlap, 
            (1-gradient)*uv[1][-len(overlap):] + gradient*vis[1][:len(overlap)] 
        ]), 
        vis[:,len(overlap):] 
    ]) 

 

S26 Reflectance measurements 
The reflectance measurements of the as-deposited combinatorial film are depicted in Fig. S33. With the locations of the 
measurements in the top right of the figure, a tendency of increasing reflectance of the main peak between 500 and 750 nm from 
top left to bottom right is apparent. 
  



S27 Urbach energy 
The Urbach energy 𝐸଴ is obtained using the relationship7 

𝛼 = 𝛼଴ exp ൬
ℎ𝜈 − 𝐸ଵ

𝐸଴
൰  

by plotting ln(𝛼) against ℎ𝜈 and graphically determining the slope of the exponentially dependent part. This yields the inverse of the 
Urbach energy which can be used as measure of disorder. Similar to the bandgap evaluation in the main text (Results and discussion, 
Optical Properties), an automatized routine sequentially calculates linear regressions of ln(𝛼) with a window size of 89.6 meV in 
steps of 4.2 meV. From this data, the line with the highest slope is picked to calculate 𝐸଴ (Fig. S34 a–b). In the case of the annealed 
film, the evaluation range is restricted to photon energies above 1.9 eV which prevents that the exponential part of a secondary 
photon transition is picked (Fig. S34 b). This results in the Urbach energy maps in Fig. S34 c–d, which do not change significantly in 
the upper two rows of samples (note the different scale of the colour bar) but are significantly different in the bottom row. 

  
Fig. S33 Reflectance measurements of the combinatorial film, one for each substrate. 
The locations of the measurements are visualized in the top right. 

Fig. S34 (a,b) Plots for the evaluation of the Urbach energy of pixels in the Cu, Ga, Fe, 
and Ga+Fe regions, i.e., top-left, bottom-left, top-right, and bottom-right of the 
combinatorial film, respectively. (c,d) Resulting Urbach energy maps, where the values 
of the colour bars are the minimum, the mean, and the maximum Urbach energy. (a,c) 
and (b,d) are for the as-deposited and for the annealed film, respectively. 

S28 Reproducibility of the band gap 
An additional combinatorial film is deposited and analysed by FT transmission measurements as described in the main text 
(Experimental, Sample preparation; Results and discussion, Optical properties). This results in the band gap maps of Fig. S35 which 
feature three horizontal lines of darker data points, i.e., lower band gap values. Chronologically, this film was deposited earlier than 
the data that is shown in the main text and was later used for the heat treatment. The FT transmission measurement routine was not 
ideal yet and the top row of each sample was partially shadowed which resulted in non-correct results. Still, the remaining pixels 
should be comparable and are used to calculate the relative deviations as described in the main text (Results and discussion, 
Composition), yielding Fig. S36. 



  
Fig. S35 Maps of direct and indirect band gaps evaluated using the Tauc method of an 
additional combinatorial film. The darker horizontal lines are erroneous data which 
originate from imperfect measurement conditions (see text). The values of the colour 
bars are the minimum, the mean, and the maximum band gap energy. 

Fig. S36 Maps of relative deviation of the direct and indirect band gap of two equally 
prepared combinatorial films. The white horizontal lines are removed data which 
originate from imperfect measurement conditions (see text). The values of the colour 
bar are the minimum, the mean, and the maximum relative deviation. 

S29 List of band gap values 

Table S4: Average band gap values from cited references in eV. The bold printed ones are used for the evaluation in the main text. 

Compound Direct Indirect Compound Direct Indirect 

CuFe2O4 
1.508 
1.959,10 

1.3011,12 
1.95(i)10 

CuO 1.5013,14 
3.4715–17 

1.3615–17 

CuGa2O4 4.4518,19 – Cu2O 2.2313,20 – 

Fe3O4 2.8021–23 2.0621,23 CuFeO2 
1.1224,25 
2.0825–28 
3.1529,30 

0.7824 
1.1526–28 
1.6329 

FeGa2O4 2.4531 – CuGaO2 2.4832 
3.5333,34 

1.4032 

 
 

S30 Simulated bandgap map 

 
Fig. S37 Calculated direct band gap map as described in the main text, (a) with considering all structures in the crystal structure evaluation and (b) without considering delafossite. The 
values of the colour bar are the minimum, the mean, and the maximum band gap energy. 

 
  



S31 Correlation matrix 

 
Fig. S38 Correlation matrix for the relationships between the composition, i.e., “Cu”, “Ga”, and “Fe” for the Cu, Ga, and Fe mole fractions from Fig. 4 b (main text), the crystal structure, 
i.e., “Spinel”, “CuO”, “Delaf.”, and “Cu2O” for the relative amounts of spinel, CuO, delafossite, and Cu2O from Fig. 6 (main text), and “BG d” and “BG i” for the direct and indirect band 
gap energies from Fig. 8 (main text). The suffixes “A” and “B” after crystal structure names refer to the two evaluation results in Fig. 6 a and b (main text), respectively. The “HT” after 
the band gap name indicates the heat-treated (annealed) film, i.e., Fig. 8 b (main text). The three values in each cell are from top to bottom: (1) linear correlation coefficient, (2) 
associated p-value, and (3) distance correlation coefficient. The colouring corresponds to the linear correlation coefficient with more saturated green and violet cells for higher positive 
and negative values, respectively. 
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