SUPPORTING INFORMATIONS

Polyacrylonitrile-grafted lignin copolymer derived carbon nanofibers as flexible electrodes for high performance capacitive energy storage

Da-Young Kim^a, Sivaprakasam Radhakrishnan^b, Seungmin Yu^a and Byoung-Suhk Kim^{a,b*}

^a Department of Carbon Composites Convergence Materials Engineering, Jeonbuk National University, 567 Baekje-daero, Deokjin-gu, Jeonju-si, Jeollabuk-do 54896, Republic of Korea

^b Department of Organic Materials & Textile Engineering, Jeonbuk National University, 567 Baekje-daero, Deokjin-gu, Jeonju-si, Jeollabuk-do 54896, Republic of Korea

*Corresponding author: *E-mail address*: kbsuhk@jbnu.ac.kr (B. S. Kim)

Fig. S1 Schematic illustration for the formation mechanism of PAN-g-lignin.

Fig. S2 FE-SEM images of carbonized PAN-g-lignin nanofibers at 800 °C (a) and 1200 °C (b).

Fig. S3 Plot of Fiber diameter and Sheet resistance against carbonization temperature.

Fig. S4 High-resolution XPS spectra of C 1s and N 1s for C-800 (A & C) and C-1200 (B & D), respectively.

Fig. S5 Water contact angle of CNFs derived at different carbonization temperature.

Fig. S6 EIS spectra of CNFs (C-1000) electrode before and after cyclic stability measurements

Fig. S7 Schematic illustration for the fabrication of solid-state symmetric supercapacitor (SSC) device

Electrode Materials	Specific capacitance	Energy density (Wh/kg)	Power density (W/kg)	Electrolyte	Ref.
Porous carbon nanofiber	256 F g ⁻¹	35.6	128	H ₂ SO ₄	[1]
Cotton stalk	111 F g ⁻¹	12.5	900	КОН	[2]
NiO/Carbon microfibers	284 F g ⁻¹	154 mWh/cm ²	2801 mW/cm ²	КОН	[3]
CNT//CNT/MoO ₃	3.0 F cm ⁻³	1.5 mWh cm ⁻³	4.2 W cm ⁻³	H ₂ SO ₄	[4]
Carbon nanofibers	210	27.2	508	КОН	[5]
Carbon nanofibers	204 F g ⁻¹			H ₂ SO ₄	[6]
Activated-carbon nanofibers	192 F g ⁻¹			КОН	[7]
Carbon nanofiber aerogel	1066 F g ⁻¹	30	501	Na ₂ SO ₄	[8]
N-doped carbon nanofibers	644 F g ⁻¹	33	800	РVА-КОН	[9]
ZnO-Carbon nanofibers	216 F g ⁻¹	29.7	30	КОН	[10]
MnO	545 F g ⁻¹	27	176	КОН	[11]
N-doped carbon	250 F g ⁻¹	22.3	100	КОН	[12]
Carbon nanofibers	137 F g ⁻¹	33	800	PVA-H ₂ SO ₄	This work

 Table S1 Supercapacitor performance comparison with literature reports.

References

[1] E. Taer, N.Y. Effendi, R. Taslim, A. Apriwandi, Interconnected micro-mesoporous carbon nanofiber derived from lemongrass for symmetric supercapacitor performance, *Journal of*

Materials Research and Technology, 2022, 19, 4721-4732.

[2] J. Tian, T. Zhang, D. Talifu, A. Abulizi, Y.Ji, Porous carbon materials derived from waste cotton cotton stalk with ultra-high surface area for high performance supercapacitors, *Materials Research Bulletin*, 2021, **143**, 111457.

[3] N. Parveen, A.A. Sajid, A-A.T. Batool, M.O. Ansari, Fabrication of binder-free hierarchical three dimensional NiO nanoflakes@carbon nanofibers for superior symmetric supercapacitor applications, *Journal Energy Storage*, 2022, **55**, 105619.

[4] X. Xiao, T. Li, Z. Peng, H. Jin, Q. Zhong, Q. Hu, B. Yao, Q. Luo, C. Zhang, L. Gong, J. Chen, Y. Gogotsi, J. Zhou, Freestanding functionalized carbon nanotube-based electrode for solid-state asymmetric supercapacitors, *Nano Energy*, 2014, **6**, 1-9.

[5] H. Liu, W. Song, A. Xing, In situ K₂S activated electrospun carbon nanofibers with hierarchical meso/microporous structures for supercapacitors, *RSC Advances*, 2019, **9**, 33539.

[6] R.Singhal, V. Kalra, Using common salt to impart pseudocapacitive functionalities to carbon nanofibers, *J. Mater. Chem.*, 2015, **3**, 377.

[7] W. Qian, X. Li, X. Zhu, Z. Hu, X. Shang, G. Luo, H. Yao, Preparation of activated carbon nanofibers using degradative solvent extraction products obtained from low-rank coal and their utilization in supercapacitors, *RSC Advances*, 2020, **10**, 8172-8180.

[8] F. Lai, Y. Huang, L. Zuo, H. Gu, Y-E. Miao, T. Liu, Electrospun nanofiber-supported carbon aerogel as a versatile platform towards asymmetric supercapacitors, *J. Mater. Chem. A*, 2016, **4**, 15861-15869.

[9] Z. Li, J. Bu, C. Zhang, L. Chen, D. Pan, Z. Chen, M. Wu, Electrospun carbon nanofibers embedded with MOF-derived N-doped porous carbon and ZnO quantum dots for asymmetric flexible supercapacitors, *New Journal Chemistry*, 2021, **45**, 10672.

[10] S. Shi, X. Zhuang, B. Cheng, X. Wang, Solution blowing of ZnO nanoflakes-encapsulated carbon nanofibers as electrodes for supercapacitors, *J. Mater. Chem. A*, 2013, **1**, 13779-13788.

[11] W. Guo, X. Guo, L. Yang, T. Wang, M. Zhang, G. Duan, X. Liu, Y. Li, Synthetic melanin facilitates MnO supercapacitors with high specific capacitance and wide operation potential window, *Polymer*, 2021, **235**, 124276.

[12] Y. Wang, H. Li, W. Yang, S. Jian, C. Zhang, G. Duan, One step activation by ammonium chloride towards N-doped porous carbon from camellia oleifera for supercapacitor with high specific capacitance and rate capability, *Diamond & Related Materials*, 2022, **130**, 109526.