Electronic Supplementary Information (ESI)

Hydroxide conducting BAB triblock copolymers tailored for durable high-performance anion exchange membranes

Andrit Allushi, Pegah Mansouri Bakvand, Haiyue Gong and Patric Jannasch*

Polymer & Materials Chemistry, Department of Chemistry, Lund University, P.O. Box 124, SE-221 00, Lund, Sweden *E-mail: <u>patric.jannasch@chem.lu.se</u>

Fig. S1. SEC chromatogram of PDPF-Me with the M_n , M_w and PDI data.

Fig. S2. ¹H NMR spectrum of PDPF-Br.

Fig. S3. SEC chromatograms of a) PDPF-*b*-PS-30, b) PDPF-*b*-PS-38, c) PDPF-*b*-PS-43, and d) PDPF-*b*-PS-48. Each panel includes the SEC trace of PDPF-Me for comparison, as well as the M_n , M_w and PDI data.

Fig. S4. The ¹H NMR spectra of a) PDPF-*b*-PS-30, b) PDPF-*b*-PS-38, c) PDPF-*b*-PS-43, and d) PDPF-*b*-PS-48.

Fig. S5. The expected ATRP of styrene from of a dibrominated end group.

Table S1. Data from calculations of M_n values after assuming a random distribution of the double brominated sites.

Precursor	PS	$M_{\rm n}$ of blocks	$M_{\rm n}$ of block	$M_{\rm n}$ of block	$M_{\rm n}$ of block
polymers	content	of PS	copolymer with	copolymer with	copolymer with
	(wt%)	(kg mol ⁻¹)	single brominated	double brominated	double brominated
			side (kg mol ⁻¹)	site at one end	at both ends
				$(kg mol^{-1})$	(kg mol ⁻¹)
PDPF-Me	0	0	25.4	25.4	25.4
PDPF-b-PS-30	38	3.18	31.8	34.9	38.1
PDPF-b-PS-38	38	4.02	33.4	37.5	41.5
PDPF-b-PS-43	43	4.55	34.5	39.1	43.6
PDPF-b-PS-48	48	5.08	35.6	40.6	45.7

Fig. S6. TGA traces of the precursor BAB triblock copolymers in the PDPF-*b*-PS-*x* series (upper), and the corresponding first derivatives (lower).

Fig. S7. DSC thermograms and T_g values of precursor copolymer PDPF-Me and the precursor BAB triblock copolymers in the PDPF-*b*-PS-*x* series.

Fig. S8. Representative ¹H NMR spectra of PDPF-*b*-PS-bisPip-int (top) and DMAc solvent (bottom).

Fig. S9. SAXS profiles of the statistical block copolymer membranes functionalized with double pairs of piperidinium cations.¹

References

1. A. Allushi, T. H. Pham and P. Jannasch, *Journal of Membrane Science*, 2021, **632**, 119376.